Drawing: Flat Strip, Round Bar and Tube

Author(s):  
Amit Bhaduri
Keyword(s):  
2020 ◽  
Vol 64 (1-4) ◽  
pp. 1253-1259
Author(s):  
Minghui Wang ◽  
Hongliu Yu

Clamping devices with constant force or pressure are desired in medical device, such as hemostatic forceps and the artificial sphincter, to prevent soft tissues from injures due to overloading. It is easily obtained by stretching an SMA wire. However, studies with SMA bending round bar have seldom been reported before. This paper studied constant force characteristic of C-shaped round bar with shape memory alloys. Optimization designs of the components were carried out with computational simulation. Numerical results show that the phenomenon of constant force strongly depends on contour curve shape and geometric dimensions of the C-shaped round bar of SMA component.


2021 ◽  
Vol 34 (1) ◽  
Author(s):  
Jianye Gao ◽  
Tao He ◽  
Yuanming Huo ◽  
Miao Song ◽  
Tingting Yao ◽  
...  

AbstractDuctile fracture of metal often occurs in the plastic forming process of parts. The establishment of ductile fracture criterion can effectively guide the selection of process parameters and avoid ductile fracture of parts during machining. The 3D ductile fracture envelope of AA6063-T6 was developed to predict and prevent its fracture. Smooth round bar tension tests were performed to characterize the flow stress, and a series of experiments were conducted to characterize the ductile fracture firstly, such as notched round bar tension tests, compression tests and torsion tests. These tests cover a wide range of stress triaxiality (ST) and Lode parameter (LP) to calibrate the ductile fracture criterion. Plasticity modeling was performed, and the predicted results were compared with corresponding experimental data to verify the plasticity model after these experiments. Then the relationship between ductile fracture strain and ST with LP was constructed using the modified Mohr–Coulomb (MMC) model and Bai-Wierzbicki (BW) model to develop the 3D ductile fracture envelope. Finally, two ductile damage models were proposed based on the 3D fracture envelope of AA6063. Through the comparison of the two models, it was found that BW model had better fitting effect, and the sum of squares of residual error of BW model was 0.9901. The two models had relatively large errors in predicting the fracture strain of SRB tensile test and torsion test, but both of the predicting error of both two models were within the acceptable range of 15%. In the process of finite element simulation, the evolution process of ductile fracture can be well simulated by the two models. However, BW model can predict the location of fracture more accurately than MMC model.


2005 ◽  
Vol 297-300 ◽  
pp. 397-402
Author(s):  
Je Chang Ha ◽  
Joon Hyun Lee ◽  
Masaaki Tabuchi ◽  
A.Toshimitsu Yokobori Jr.

Most heat resisting materials in structural components are used under multi-axial stress conditions and under such conditions ductile materials often exhibit brittle manner and low creep ductility at elevated temperature. Creep crack initiation and growth properties are also affected by multi-axial stress and it is important to evaluate these effects when laboratory data are applied to structural components. Creep crack growth tests using circumferential notched round bar specimens are a simple method to investigate multi-axial stress effects without using complicated test facilities. Creep crack growth tests have been performed using a 12CrWCoB turbine rotor steel. In order to investigate the effects of multi-axial stress on creep crack growth properties, the tests were conducted for various notch depths at 650°C. The circumferential notched round bar specimen showed brittle crack growth behaviour under multi-axial stress conditions. Creep crack growth rate was characterized in terms of the C* parameter. A 12CrWCoB turbine rotor steel has been tested using circumferential notched round bar specimens with different multi-axiality. Circumferential notched round bar specimens show increased brittle creep crack growth behaviour due to the multi-axial stress condition. Creep crack growth properties could be predicted by allowing for the decrease of creep ductility under multi-axial conditions.


2015 ◽  
Vol 37 (3) ◽  
pp. 939-970 ◽  
Author(s):  
RUSSELL RICKS

Let$X$be a proper, geodesically complete CAT($0$) space under a proper, non-elementary, isometric action by a group$\unicode[STIX]{x1D6E4}$with a rank one element. We construct a generalized Bowen–Margulis measure on the space of unit-speed parametrized geodesics of$X$modulo the$\unicode[STIX]{x1D6E4}$-action. Although the construction of Bowen–Margulis measures for rank one non-positively curved manifolds and for CAT($-1$) spaces is well known, the construction for CAT($0$) spaces hinges on establishing a new structural result of independent interest: almost no geodesic, under the Bowen–Margulis measure, bounds a flat strip of any positive width. We also show that almost every point in$\unicode[STIX]{x2202}_{\infty }X$, under the Patterson–Sullivan measure, is isolated in the Tits metric. (For these results we assume the Bowen–Margulis measure is finite, as it is in the cocompact case.) Finally, we precisely characterize mixing when$X$has full limit set: a finite Bowen–Margulis measure is not mixing under the geodesic flow precisely when$X$is a tree with all edge lengths in$c\mathbb{Z}$for some$c>0$. This characterization is new, even in the setting of CAT($-1$) spaces. More general (technical) versions of these results are also stated in the paper.


2010 ◽  
Vol 6 ◽  
pp. 13001 ◽  
Author(s):  
T. Yoshida ◽  
K. Sakurada ◽  
M. Hoshino
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document