Transmutation of Spent Nuclear Fuel and Extension of a Fuel Cycle

Author(s):  
Vinod Kumar Verma ◽  
Karel Katovsky
MRS Advances ◽  
2018 ◽  
Vol 3 (19) ◽  
pp. 991-1003 ◽  
Author(s):  
Evaristo J. Bonano ◽  
Elena A. Kalinina ◽  
Peter N. Swift

ABSTRACTCurrent practice for commercial spent nuclear fuel management in the United States of America (US) includes storage of spent fuel in both pools and dry storage cask systems at nuclear power plants. Most storage pools are filled to their operational capacity, and management of the approximately 2,200 metric tons of spent fuel newly discharged each year requires transferring older and cooler fuel from pools into dry storage. In the absence of a repository that can accept spent fuel for permanent disposal, projections indicate that the US will have approximately 134,000 metric tons of spent fuel in dry storage by mid-century when the last plants in the current reactor fleet are decommissioned. Current designs for storage systems rely on large dual-purpose (storage and transportation) canisters that are not optimized for disposal. Various options exist in the US for improving integration of management practices across the entire back end of the nuclear fuel cycle.


2018 ◽  
Vol 4 (1) ◽  
pp. 27-33
Author(s):  
Vladimir I. Usanov ◽  
Stepan A. Kviatkovskii ◽  
Andrey A. Andrianov

The paper describes the approach to the assessment of nuclear energy systems based on the integral indicator characterizing the level of their sustainability and results of comparative assessment of several nuclear energy system options incorporating different combinations of nuclear reactors and nuclear fuel cycle facilities. The nuclear energy systems are characterized by achievement of certain key events pertaining to the following six subject areas: economic performance, safety, availability of resources, waste handling, non-proliferation and public support. Achievement of certain key events is examined within the time interval until 2100, while the key events per se are assessed according to their contribution in the achievement of sustainable development goals. It was demonstrated that nuclear energy systems based on the once-through nuclear fuel cycle with thermal reactors and uranium oxide fuel do not score high according to the integral sustainable development indicator even in the case when the issue of isolation of spent nuclear fuel in geological formation is resolved. Gradual replacement of part of thermal reactors with fast reactors and closing the nuclear fuel cycle results in the achievement of evaluated characteristics in many subject areas, which are close to maximum requirements of sustainable development, and in the significant enhancement of the sustainability indicator.


2021 ◽  
Author(s):  
Xuesong Yan ◽  
Yaling Zhang ◽  
Yucui Gao ◽  
Lei Yang

Abstract To make the nuclear fuel cycle more economical and convenient, as well as prevent nuclear proliferation, the conceptual study of a simple high-temperature dry reprocessing of spent nuclear fuel (SNF) for a ceramic fast reactor is proposed in this paper. This simple high-temperature dry (HT-dry) reprocessing includes the Atomics International Reduction Oxidation (AIROX) process and purification method for rare-earth elements. After removing the part of fission products from SNF by a HT-dry reprocessing without fine separation, the remaining nuclides and some uranium are fabricated into fresh fuel which can be used back to the ceramic fast reactor. Based on the ceramic coolant fast reactor, we studied neutron physics of nuclear fuel cycle which consists operation of ceramic reactor, removing part of fission products from SNF and preparation of fresh fuels for many time. The parameters of the study include effective multiplication factor (Keff), beam density, and nuclide mass for different ways to remove the fission products from SNF. With the increase in burnup time, the trend of increasing 239Pu gradually slows down, and the trend of 235U gradually decreases and become balanced. For multiple removal of part of fission products in the nuclear fuel cycle, the higher the removal, the larger the initial Keff.


2006 ◽  
Vol 932 ◽  
Author(s):  
David G. Bennett ◽  
Alan J. Hooper ◽  
Sylvie Voinis ◽  
Hiroyuki Umeki

Radioactive waste derives from all phases of the nuclear fuel cycle and from the use of radioactive materials in industrial, medical, military and research applications; all such wastes must be managed safely. The most hazardous and long-lived wastes, such as spent nuclear fuel and waste from nuclear fuel reprocessing, must be contained and isolated from humans and the environment for many thousands of years. Many Nuclear Energy Agency (NEA) member countries are, therefore, researching plans for the management of long-lived radioactive waste in engineered facilities, or repositories, located deep underground in suitable geological formations.


2020 ◽  
Vol 6 (2) ◽  
pp. 93-98
Author(s):  
Nikita V. Kovalev ◽  
Boris Ya. Zilberman ◽  
Nikolay D. Goletsky ◽  
Andrey B. Sinyukhin

A review of simulated nuclear fuel cycles with mixed uranium-plutonium fuel (REMIX) was carried out. The concept of REMIX fuel is one of the options for closing the nuclear fuel cycle (NFC), which makes it possible to recycle uranium and plutonium in VVER-1000/1200 thermal reactors at a 100% core loading. The authors propose a new approach to the recycling of spent nuclear fuel (SNF) in thermal reactors. The approach implies a simplified fabrication of mixed fuel when plutonium is used in high concentration together with enriched natural uranium, while reprocessed uranium is supposed to be enriched and used separately. The share of standard enriched natural uranium fuel in this nuclear fuel cycle is more than 50%, the share of mixed natU+Pu fuel is 25%, the rest is fuel obtained from enriched reprocessed uranium. It is emphasized that the new approach has the maximum economic prospect and makes it possible to organize the fabrication of this fuel and nuclear material cross-cycling at the facilities available in the Russian Federation in the short term. This NFC option eliminates the accumulation of SNF in the form of spent fuel assemblies (SFA). SNF is always reprocessed with the aim of further using the primary reprocessed uranium and plutonium. Non-recyclable in thermal reactors, burnt, reprocessed uranium, the energy potential of which is comparable to natural uranium, as well as secondary plutonium intended for further use in fast reactors, are sent as reprocessing by-products to the storage area.


Author(s):  
Tadahiro Katsuta

Political and technical advantages to introduce spent nuclear fuel interim storage into Japan’s nuclear fuel cycle are examined. Once Rokkasho reprocessing plant starts operation, 80,000 tHM of spent Low Enriched Uranium (LEU) fuel must be stored in an Away From Reactor (AFR) interim storage site until 2100. If a succeeding reprocessing plant starts operating, the spent LEU will reach its peak of 30,000 tHM before 2050, and then will decrease until the end of the second reprocessing plant operation. Throughput of the second reprocessing plant is assumed as twice of that of Rokassho reprocessing plant, indeed 1,600tHM/year. On the other hand, tripled number of final disposal sites for High Level Nuclear Waste (HLW) will be necessary with this condition. Besides, large amount of plutonium surplus will occur, even if First Breeder Reactors (FBR)s consume the plutonium. At maximum, plutonium surplus will reach almost 500 tons. These results indicate that current nuclear policy does not solve the spent fuel problems but rather complicates them. Thus, reprocessing policy could put off the problems in spent fuel interim storage capacity and other issues could appear such as difficulties in large amount of HLW final disposal management or separated plutonium management. If there is no reprocessing or MOX use, the amount of spent fuel will reach over 115,000 tones at the year of 2100. However, the spent fuel management could be simplified and also the cost and the security would be improved by using an interim storage primarily.


2019 ◽  
Vol 1 (1) ◽  
pp. 294-310
Author(s):  
Holdsworth ◽  
Eccles ◽  
Rowbotham ◽  
Brookfield ◽  
Collison ◽  
...  

Managing certain by-products of the nuclear fuel cycle, such as the radioactive isotopes of caesium: 134Cs, 135Cs and 137Cs is challenging due to their environmental mobility and radioactivity. While a great many materials can isolate Cs+ ions from neutral or basic aqueous solutions via ion exchange, few of these, with the exception of ammonium phosphomolybdate (AMP), function effectively in acidic media. The use of AMP, and its porous composite in polyacrylonitrile (PAN) for management of Cs radioisotopes in various nuclear wastes have been known for decades and are well studied, yet the effects of radiation on the physiochemical properties of such composites have only received limited attention to date. In a previous publication, we demonstrated that a 100 kGy gamma irradiation dose has negligible effect on the ion exchange performance of AMP and AMP–PAN with respect to capacity or kinetics under the Cs+ concentrations and acidity found in spent nuclear fuel (SNF) recycling. As a continuation of this prior study, in this publication we explore the effects of gamma irradiation on the physiochemical properties of AMP and AMP–PAN using a range of characterisation methods. The effects of the same gamma dose on the oxidation state of Mo in AMP and AMP–PAN, the thermal degradation of both AMP and AMP–PAN, combined with a first study into the high-temperature degradation AMP, are reported. The implications of irradiation, its possible mechanism, the conditions present in SNF recycling, and for the end-of-life disposal or recycling of these materials are also discussed.


2011 ◽  
Vol 75 (4) ◽  
pp. 2359-2377 ◽  
Author(s):  
R. C. Ewing

AbstractDuring the past 70 years, more than 2000 metric tonnes of Pu, and substantial quantities of the ‘minor’ actinides such as Np, Am and Cm, have been generated in nuclear reactors. Some of these transuranium elements can be a source of energy in fission reactions (e.g. 239Pu), a source of fissile material for nuclear weapons (e.g. 239Pu and 2Np), and of environmental concern because of their long half-lives and radiotoxicity (e.g. 239Pu and 237Np). There are two basic strategies for the disposition of these transuranium elements: (1) to ‘burn’ or fission the actinides using nuclear reactors or accelerators; (2) to dispose of the actinides directly as spent nuclear fuel or to ‘sequester’ the actinides in chemically durable, radiation-resistant materials that are also suitable for geological disposal. For the latter strategy, there has been substantial interest in the use of actinide-bearing minerals, especially isometric pyrochlore, A2B2Oi (A = rare earths; B = Ti, Zr, Sn, Hf), for the immobilization of actinides, particularly plutonium, both as inert matrix fuels and nuclear waste forms. Systematic studies of rare-earth pyrochlores have led to the discovery that certain compositions (B = Zr, Hf) are stable to very high doses of α-decay event damage. Recent developments in the understanding of the properties of actinide-bearing solids have opened up new possibilities for the design of advanced nuclear materials that can be used as fuels and waste forms. As an example, the amount of radiation damage that accumulates over time can be controlled by the selection of an appropriate composition for the pyrochlore and a consideration of the thermal environment of disposal. In the case of deep borehole disposal (3—5 km), the natural geothermal gradient may provide enough heat to reduce the amount of accumulated radiation damage by thermal annealing.


Sign in / Sign up

Export Citation Format

Share Document