Regulation of Metabolic Pathways in Steroidogenic Cells by Ad4BP/SF-1

2018 ◽  
pp. 35-43
Author(s):  
Ken-ichirou Morohashi ◽  
Miki Inoue ◽  
Bing Li ◽  
Takashi Baba
Author(s):  
Robert P. Apkarian

A multitude of complex ultrastructural features are involved in endothelial cell (EC) gating and sorting of lipid through capillaries and into steroidogenic cells of the adrenal cortex. Correlative microscopy is necessary to distinguish the structural identity of features involved in specific cellular pathways. In addition to diaphragmed fenestrae that frequently appear in clusters, other 60-80 nm openings; plasmalemma vesicles (PV), channels and pockets fitted with diaphragms of the same dimension, coexist on the thin EC surface. Non-diaphragmed coated pits (CP) (100-120 nm) involved in receptor mediated endocytosis were also present on the EC membrane. The present study employed HRSEM of cryofractured and chromium coated specimens and low voltage HRSTEM of 80 nm thick LX-112 embedded sections stained with 2.0% uranyl acetate. Both preparations were imaged at 25 kV with a Topcon DS-130 FESEM equipped with in-lens stage and STEM detector.HRSEM images of the capillary lumen coated with a lnm continuous fine grain Cr film, provided the ability to scan many openings and resolve (SE-I contrast) the fine structure of diaphragm spokes and central densities (Fig. 1).


2010 ◽  
Author(s):  
Sohan Lal ◽  
Kolin Paul ◽  
James Gomes
Keyword(s):  

Planta Medica ◽  
2016 ◽  
Vol 81 (S 01) ◽  
pp. S1-S381
Author(s):  
E Vikeved ◽  
R Buonfiglio ◽  
T Kogej ◽  
A Backlund

1965 ◽  
Vol 49 (3) ◽  
pp. 427-435 ◽  
Author(s):  
K. D. Voigt ◽  
J. Tamm ◽  
U. Volkwein ◽  
H. Schedewie

ABSTRACT Pregnenolone-sulphate (400 mg) was perfused through isolated dog livers. The following steroids were isolated in the perfusate: pregnenolone, progesterone, dehydroepiandrosterone, androst-5-ene-diol and the two steroid conjugates, i. e. pregnenolone-sulphate and dehydroepiandrosterone-sulphate. Two »free« steroids and one steroid conjugate could not be characterized. A tentative scheme for the metabolic pathways of pregnenolone-sulphate is presented.


Author(s):  
Kamila B. Muchowska ◽  
Sreejith Jayasree VARMA ◽  
Joseph Moran

How core biological metabolism initiated and why it uses the intermediates, reactions and pathways that it does remains unclear. Life builds its molecules from CO<sub>2 </sub>and breaks them down to CO<sub>2 </sub>again through the intermediacy of just five metabolites that act as the hubs of biochemistry. Here, we describe a purely chemical reaction network promoted by Fe<sup>2+ </sup>in which aqueous pyruvate and glyoxylate, two products of abiotic CO<sub>2 </sub>reduction, build up nine of the eleven TCA cycle intermediates, including all five universal metabolic precursors. The intermediates simultaneously break down to CO<sub>2 </sub>in a life-like regime resembling biological anabolism and catabolism. Introduction of hydroxylamine and Fe<sup>0 </sup>produces four biological amino acids. The network significantly overlaps the TCA/rTCA and glyoxylate cycles and may represent a prebiotic precursor to these core metabolic pathways.


Sign in / Sign up

Export Citation Format

Share Document