A Context-Aware Fuzzy Classification Technique for OLAP Text Analysis

Author(s):  
Anirban Chakrabarty ◽  
Santanu Roy ◽  
Sudipta Roy
2012 ◽  
Vol 2 (4) ◽  
Author(s):  
Arun Mondal ◽  
Anirban Mukhopadhyay ◽  
Subhanil Guha ◽  
Sanada Kundu ◽  
Sandip Mukherjee ◽  
...  

2017 ◽  
Vol 309 ◽  
pp. 683-694 ◽  
Author(s):  
Heisnam Rohen Singh ◽  
Saroj Kr. Biswas ◽  
Biswajit Purkayastha

2018 ◽  
Vol 9 (2) ◽  
pp. 111-120
Author(s):  
Argha Roy ◽  
Shyamali Guria ◽  
Suman Halder ◽  
Sayani Banerjee ◽  
Sourav Mandal

Recently, the web has been crowded with growing volumes of various texts on every aspect of human life. It is difficult to rapidly access, analyze, and compose important decisions using efficient methods for raw textual data in the form of social media, blogs, feedback, reviews, etc., which receive textual inputs directly. It proposes an efficient method for summarization of various reviews of tourists on a specific tourist spot towards analyzing their sentiments towards the place. A classification technique automatically arranges documents into predefined categories and a summarization algorithm produces the exact condensed input such that output is most significant concepts of source documents. Finally, sentiment analysis is done in summarized opinion using NLP and text analysis techniques to show overall sentiment about the spot. Therefore, interested tourists can plan to visit the place do not go through all the reviews, rather they go through summarized documents with the overall sentiment about target place.


1998 ◽  
Vol 6 (1) ◽  
pp. 144-152 ◽  
Author(s):  
B.-G. Hu ◽  
R.G. Gosine ◽  
L.X. Cao ◽  
C.W. de Silva

2021 ◽  
Vol 11 (17) ◽  
pp. 8172
Author(s):  
Jebran Khan ◽  
Sungchang Lee

We proposed an application and data variations-independent, generic social media Textual Variations Handler (TVH) to deal with a wide range of noise in textual data generated in various social media (SM) applications for enhanced text analysis. The aim is to build an effective hybrid normalization technique that ensures the use of useful information of the noisy text in its intended form instead of filtering them out to analyze SM text better. The proposed TVH performs context-aware text normalization based on intended meaning to avoid the wrong word substitution. We integrate the TVH with state-of-the-art (SOTA) deep-learning-based text analysis methods to enhance their performance for noisy SM text data. The proposed scheme shows promising improvement in the text analysis of informal SM text in terms of precision, recall, accuracy, and F1-score in simulation.


Author(s):  
Argha Roy ◽  
Shyamali Guria ◽  
Suman Halder ◽  
Sayani Banerjee ◽  
Sourav Mandal

Recently, the web has been crowded with growing volumes of various texts on every aspect of human life. It is difficult to rapidly access, analyze, and compose important decisions using efficient methods for raw textual data in the form of social media, blogs, feedback, reviews, etc., which receive textual inputs directly. It proposes an efficient method for summarization of various reviews of tourists on a specific tourist spot towards analyzing their sentiments towards the place. A classification technique automatically arranges documents into predefined categories and a summarization algorithm produces the exact condensed input such that output is most significant concepts of source documents. Finally, sentiment analysis is done in summarized opinion using NLP and text analysis techniques to show overall sentiment about the spot. Therefore, interested tourists can plan to visit the place do not go through all the reviews, rather they go through summarized documents with the overall sentiment about target place.


Sign in / Sign up

Export Citation Format

Share Document