Machine Learning Algorithms with ROC Curve for Predicting and Diagnosing the Heart Disease

Author(s):  
R. Kannan ◽  
V. Vasanthi
Author(s):  
Wan Adlina Husna Wan Azizan ◽  
A'zraa Afhzan Ab Rahim ◽  
Siti Lailatul Mohd Hassan ◽  
Ili Shairah Abdul Halim ◽  
Noor Ezan Abdullah

2021 ◽  
Vol 10 (1) ◽  
pp. 99
Author(s):  
Sajad Yousefi

Introduction: Heart disease is often associated with conditions such as clogged arteries due to the sediment accumulation which causes chest pain and heart attack. Many people die due to the heart disease annually. Most countries have a shortage of cardiovascular specialists and thus, a significant percentage of misdiagnosis occurs. Hence, predicting this disease is a serious issue. Using machine learning models performed on multidimensional dataset, this article aims to find the most efficient and accurate machine learning models for disease prediction.Material and Methods: Several algorithms were utilized to predict heart disease among which Decision Tree, Random Forest and KNN supervised machine learning are highly mentioned. The algorithms are applied to the dataset taken from the UCI repository including 294 samples. The dataset includes heart disease features. To enhance the algorithm performance, these features are analyzed, the feature importance scores and cross validation are considered.Results: The algorithm performance is compared with each other, so that performance based on ROC curve and some criteria such as accuracy, precision, sensitivity and F1 score were evaluated for each model. As a result of evaluation, Accuracy, AUC ROC are 83% and 99% respectively for Decision Tree algorithm. Logistic Regression algorithm with accuracy and AUC ROC are 88% and 91% respectively has better performance than other algorithms. Therefore, these techniques can be useful for physicians to predict heart disease patients and prescribe them correctly.Conclusion: Machine learning technique can be used in medicine for analyzing the related data collections to a disease and its prediction. The area under the ROC curve and evaluating criteria related to a number of classifying algorithms of machine learning to evaluate heart disease and indeed, the prediction of heart disease is compared to determine the most appropriate classification. As a result of evaluation, better performance was observed in both Decision Tree and Logistic Regression models.


2019 ◽  
Vol 97 ◽  
pp. 103257 ◽  
Author(s):  
Juan-Jose Beunza ◽  
Enrique Puertas ◽  
Ester García-Ovejero ◽  
Gema Villalba ◽  
Emilia Condes ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document