Water Resources and Impact of Climate Change on Water Resources in Central Asia

Author(s):  
Jilili Abuduwaili ◽  
Gulnura Issanova ◽  
Galymzhan Saparov
2014 ◽  
Vol 28 (15) ◽  
pp. 5267-5281 ◽  
Author(s):  
Christopher J. White ◽  
Trevor W. Tanton ◽  
David W. Rycroft

2015 ◽  
Vol 17 (3) ◽  
pp. 594-606 ◽  

<div> <p>The impact of climate change on water resources through increased evaporation combined with regional changes in precipitation characteristics has the potential to affect mean runoff, frequency and intensity of floods and droughts, soil moisture and water supply for irrigation and hydroelectric power generation. The Ganga-Brahmaputra-Meghna (GBM) system is the largest in India with a catchment area of about 110Mha, which is more than 43% of the cumulative catchment area of all the major rivers in the country. The river Damodar is an important sub catchment of GBM basin and its three tributaries- the Bokaro, the Konar and the Barakar form one important tributary of the Bhagirathi-Hughli (a tributary of Ganga) in its lower reaches. The present study is an attempt to assess the impacts of climate change on water resources of the four important Eastern River Basins namely Damodar, Subarnarekha, Mahanadi and Ajoy, which have immense importance in industrial and agricultural scenarios in eastern India. A distributed hydrological model (HEC-HMS) has been used on the four river basins using HadRM2 daily weather data for the period from 2041 to 2060 to predict the impact of climate change on water resources of these river systems.&nbsp;</p> </div> <p>&nbsp;</p>


2017 ◽  
Vol 21 (4) ◽  
pp. 2143-2161 ◽  
Author(s):  
Yacouba Yira ◽  
Bernd Diekkrüger ◽  
Gero Steup ◽  
Aymar Yaovi Bossa

Abstract. This study evaluates climate change impacts on water resources using an ensemble of six regional climate models (RCMs)–global climate models (GCMs) in the Dano catchment (Burkina Faso). The applied climate datasets were performed in the framework of the COordinated Regional climate Downscaling Experiment (CORDEX-Africa) project.After evaluation of the historical runs of the climate models' ensemble, a statistical bias correction (empirical quantile mapping) was applied to daily precipitation. Temperature and bias corrected precipitation data from the ensemble of RCMs–GCMs was then used as input for the Water flow and balance Simulation Model (WaSiM) to simulate water balance components.The mean hydrological and climate variables for two periods (1971–2000 and 2021–2050) were compared to assess the potential impact of climate change on water resources up to the middle of the 21st century under two greenhouse gas concentration scenarios, the Representative Concentration Pathways (RCPs) 4.5 and 8.5. The results indicate (i) a clear signal of temperature increase of about 0.1 to 2.6 °C for all members of the RCM–GCM ensemble; (ii) high uncertainty about how the catchment precipitation will evolve over the period 2021–2050; (iii) the applied bias correction method only affected the magnitude of the climate change signal; (iv) individual climate models results lead to opposite discharge change signals; and (v) the results for the RCM–GCM ensemble are too uncertain to give any clear direction for future hydrological development. Therefore, potential increase and decrease in future discharge have to be considered in climate change adaptation strategies in the catchment. The results further underline on the one hand the need for a larger ensemble of projections to properly estimate the impacts of climate change on water resources in the catchment and on the other hand the high uncertainty associated with climate projections for the West African region. A water-energy budget analysis provides further insight into the behavior of the catchment.


2021 ◽  
Author(s):  
Zarina Saidaliyeva ◽  
Veruska Muccione ◽  
Maria Shahgedanova ◽  
Sophie Bigler ◽  
Carolina Adler

&lt;p&gt;The mountains of Central Asia, extending over 7000 m a.s.l. and accommodating diverse and complex natural and managed systems, are very vulnerable to climate change. They support valuable environmental functions and provide key ecosystem goods and services to the arid downstream regions which strongly depend on the melting snowpack and glaciers for the provision of water by the transboundary rivers starting in the mountains. Strong climate change adaptation (CCA) action is required to increase resilience of the vulnerable, low-income communities in the region. Our knowledge of the CCA actions in the mountains of Central Asia is limited in comparison with other mountainous regions. The aim of this study is to assess the existing adaptation projects and publications and to identify gaps in adaptation efforts by conducting a systematic review of the peer-reviewed literature published in English language. To be selected, the papers had to comply with the following criteria: (i) publication between 2013 and 2019; (ii) explicit focus on CCA in the mountain ranges of Central Asia; (iii) explanation of adaptation options; (vi) a clear methodology of deriving suitable adaptation options. Following the initial screening and subsequent reading of the publications, complying with the specified criteria, 33 peer-reviewed articles were selected for final analysis. This is considerably lower than the number of publications on the European Alps, Hindu-Kush &amp;#8211; Himalayas, and the Andes. The number of publications on Central Asian mountains has declined since 2013.&lt;/p&gt;&lt;p&gt;The research is heavily focused on the problem of water resources, especially water availability at present and in the future 70 % of the analysed papers addressing these issues. These are followed by the papers considering adaptation in agriculture and in managing biodiversity. A critical finding is the lack of publications on adaptation to hazards and disasters including glacier outburst floods, mudflow, and landslides which are common and comparatively well-researched hazards in the Central Asian mountains, experiencing rapid deglaciation. About 50 % of the papers address the transboundary nature of the impacts of climate changes on water resources and land management reflecting the transboundary nature of the Central Asian catchments and the tensions which exist across the region but are especially prominent in the Aral Sea basin.&lt;/p&gt;&lt;p&gt;We conclude that while there is ample evidence of climate change and its impacts in the mountains of Central Asia and many publications mention the need for adaptation, a very limited number of publications explicitly focus on CCA and how it can be delivered.&lt;/p&gt;


Sign in / Sign up

Export Citation Format

Share Document