Partial Replacement of Steel Slag Aggregates in Concrete as Fine Aggregates (Induction Blast Furnace Slag)

Author(s):  
S. Arjun ◽  
T. Hemalatha ◽  
C. Rajasekaran
Materials ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 5879
Author(s):  
Sung-Ho Bae ◽  
Jae-In Lee ◽  
Se-Jin Choi

Recently, interest in environmentally friendly development has increased worldwide, especially in the construction industry. In this study, blast furnace slag powder (BFSP) and mixed steel fine aggregates were applied to cement mortars to reduce the environmental damage caused by the extraction of natural aggregate and to increase the recycling rate of steel by-products in the construction industry. We investigated the fluidity, compressive strength, tensile strength, accelerated carbonation depth, and chloride ion penetration resistance of mortars with steel slag aggregate and their dependence on the presence or absence of BFSP. Because the recycling rate of ferronickel slag is low and causes environmental problems, we considered mortar samples with mixed fine aggregates containing blast furnace slag fine aggregate (BSA) and ferronickel slag fine aggregate (FSA). The results showed that the 7-day compressive strength of a sample containing both 25% BSA and 25% FSA was nearly 14.8% higher than that of the control sample. This trend is likely due to the high density and angular shape of steel slag particles. The 56-day compressive strength of the sample with BFSP and 50% FSA was approximately 64.9 MPa, which was higher than that of other samples with BFSP. In addition, the chloride ion penetrability test result indicates that the use of BFSP has a greater effect than the use of steel slag aggregate on the chloride ion penetration resistance of mortar. Thus, the substitute rate of steel slag as aggregate can be substantially enhanced if BFSP and steel slag aggregate are used in an appropriate combination.


CONCREEP 10 ◽  
2015 ◽  
Author(s):  
Tomiyuki Kaneko ◽  
Keiichi Imamoto ◽  
Chizuru Kiyohara ◽  
Akio Tanaka ◽  
Ayuko Ishikawa

2021 ◽  
Vol 8 ◽  
Author(s):  
Fusheng Niu ◽  
Yukun An ◽  
Jinxia Zhang ◽  
Wen Chen ◽  
Shengtao He

In this study, the influence of steel slag (SS) content on the strength of the cementitious materials was investigated. The quaternary active cementitious material (CaO-SiO2-Al2O3-SO3) was prepared using various proportions of steel slag (SS), granulated blast furnace slag (BFS), and desulfurized gypsum (DG). The mechanism of synergistic excitation hydration of the cementitious materials was examined using various techniques such as X-ray diffraction (XRD), scanning electron microscopy (SEM) and Fourier transform infrared spectrometry (FTIR). The strength of the mortar test block was initially increased and decreased later with the increase of the SS content. Mortar test block with 20% steel slag, 65% granulated blast furnace slag, and 15% desulfurized gypsum with 0.35 water-binder ratio showed the highest compressive strength of 57.3 MPa on 28 days. The free calcium oxide (f-CaO) in the SS reacted with water and produced calcium hydroxide (Ca(OH)2) which created an alkaline environment. Under the alkaline environment, the alkali-activated reaction occurred with BFS. In the early stage of hydration reaction, calcium silicate hydrate (C-S-H) gel and fibrous hydration product ettringite (AFt) crystals were formed, which provided early strength to the cementitious materials. As the hydration reaction progressed, the interlocked growth of C-S-H gel and AFt crystals continued and promoted the increase of the strength of the cementitious system.


Buildings ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 443
Author(s):  
Selma Bellara ◽  
Mustapha Hidjeb ◽  
Walid Maherzi ◽  
Salim Mezazigh ◽  
Ahmed Senouci

This study investigated the potential use of Zerdezas dam Calcined Sediments (CS) and El-Hadjar Blast Furnace Slag (GGBS) from northern Algeria as a partial replacement of cement (C) in normal hardening hydraulic road binders. Two binder mix designs were optimized using a Response Surface Methodology (RSM). The first mix, 50C35GGBS15CS, consisted of 50% cement, 35% blast furnace slag, and 15% calcined sediment. The second mix, 80C10GGBS10CS, consisted of 80% cement, 10% blast furnace slag, and 10% calcined sediments. The tests of workability, setting time, volume expansion, compressive and flexural strengths, porosity, and SEM were conducted to ensure that both mixes meet the standard requirements for road construction binders. The two proposed mixes were qualified as normal hardening hydraulic road binder. The reuse of the sediments will contribute to a better disposal of dam sediments and steel industry waste and to preserve natural resources that are used for manufacturing cement. It will also contribute to the environmental impact reduction of cement clinker production by reducing greenhouse gas emissions.


Sign in / Sign up

Export Citation Format

Share Document