Strength and durability of fiber reinforced concrete with partial replacement of cement by Ground Granulated Blast Furnace Slag

Author(s):  
P.K. Prasanna ◽  
K. Srinivasu ◽  
A. Ramachandra Murthy
2018 ◽  
Vol 2018 ◽  
pp. 1-14 ◽  
Author(s):  
Joo-Ha Lee ◽  
Hwang-Hee Kim ◽  
Sung-Ki Park ◽  
Ri-On Oh ◽  
Hae-Do Kim ◽  
...  

This study assessed the mechanical properties and durability of latex-modified fiber-reinforced segment concrete (polyolefin-based macrosynthetic fibers and hybrid fiber-macrosynthetic fiber and polypropylene fiber) for a tunnel liner application. The tested macrosynthetic fiber-reinforced concrete has a better strength than steel fiber-reinforced concrete. The tested concrete with blast furnace slag has a higher chloride ion penetration resistance (less permeable), but its compressive and flexural strengths can be reduced with blast furnace slag content increase. Also, the hybrid fiber-reinforced concrete has higher compressive strength, flexural strength, chloride ion water permeability resistance, impact resistance, and abrasion resistance than the macrosynthetic fiber-reinforced concrete. The modified fiber improved the performance of concrete, and the hybrid fiber was found to control the formation of micro- and macrocracks more effectively. Therefore, overall performance of the hybrid fiber-reinforced concrete was found superior to the other fiber-reinforced concrete mixes tested for this study. The test results also indicated that macrosynthetic fiber could replace the steel fiber as a concrete reinforcement.


Concrete is one of the most suitable materials in the world which are used for construction. It becomes more versatile because of his suitability in almost all situations. Reinforced structures are subject to corrosion by various means. Carbonation is one of these means that causes corrosion of reinforced concrete structures. The service life of the structures has been reduced due to the deterioration of the structures because of the corrosion of the reinforced concrete due to carbonation. This paper focuses on the effect of carbonation on the mechanical properties of concrete composed of mineral admixtures, such as ground granulated blast furnace slag and silica fume, by partial replacement of the cement. In this experiment, silica fume replaced cement in 5%, 10%, 15% and ground granulated blast furnace slag replaced the cement in 10%, 20%, 30%. Samples such as cubes, cylinders and prisms were casted and cured. Certain number of these specimens were also placed in carbonation chamber and tested for compressive strength, tensile strength and flexural strength. Normal concrete samples are also tested and the results are compared.


Author(s):  
Pratiksha R. Patil

Abstract: Soil stabilization has become the more issue in construction activity. In this study we focus on improvement of soil by using Fly ash and ground granulated blast furnace slag (GGBS). In many villages there was demolition of houses due to flood situation and landslide so stabilization of soil is very important factor in this area. In these studies we use local Fly ash and Ground granulated blast furnace slag (GGBS) for stabilization of soil. Soil are generally stabilized to increase their strength and durability or to prevent soil erosion. The properties of soil vary a great deal at different places or in certain cases even at one place the success of soil stabilization depends on soil testing. Various methods are there to stabilize soil and the method should be verified in the lab with the soil material before applying it on the field. The various percentages of Fly ash and GGBS were mixed with soil sample to conduct soil test. Using fly ash reduces the plasticity index which has potential impact on engineering properties also GGBS has cementations property which acts as binding material for the soil. On addition of 15% Fly ash and 5% GGBS increase the strength of soil (according to IS2720:1985) it’s recommended for better result. Keywords: Stabilization of soil, Fly ash, GGBS, Black cotton soil, Soil test.


Sign in / Sign up

Export Citation Format

Share Document