Investigation of Power Transfer in QAB Converter Via Phase Shift Modulation

Author(s):  
Suliana Ab Ghani ◽  
Hamdan Daniyal ◽  
Nur Huda Ramlan ◽  
Meng Chung Tiong
Keyword(s):  
2020 ◽  
Vol 35 (2) ◽  
pp. 2119-2134
Author(s):  
Fengwei Chen ◽  
Hugues Garnier ◽  
Qijun Deng ◽  
Marian K. Kazimierczuk ◽  
Xiangtao Zhuan

Electronics ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 58
Author(s):  
Kateryna Stoyka ◽  
Antonio Vitale ◽  
Massimo Costarella ◽  
Alfonso Avella ◽  
Mario Pucciarelli ◽  
...  

Inductive Power Transfer (IPT) is an emerging technology enabling a contactless charging process in manifold applications such as electric vehicles, wearable and portable devices, or biomedical applications. Such technology can be profitably used to develop enhanced electronic solutions in the framework of smart cities, homes and smart workplaces. This paper presents the development and realization of a series–series compensated IPT System (IPTS) followed by a post-regulator implemented by means of a DC–DC converter. Such a system is modeled through a first harmonic approximation method, and a sensitivity analysis of the IPTS performance is carried out with respect to the variations of the primary inverter switching frequency and phase-shift angle. As an element of novelty of this work, the bias points are determined which allow the efficiency maximization while ensuring system controllability. An enhanced dynamic modeling of the system is then performed by means of a coupled mode theory, including the inverter phase-shift modulation and extending its validity to whatever operating frequency. A digital control of the post-regulator is implemented by means of a commercial low-cost microcontroller enabling the output voltage regulation under both fixed and variable load conditions through a voltage mode control technique. An IPTS prototype is eventually realized, which is able to correctly perform the output voltage regulation at the desired nominal value of 12 V for static resistive loads in the range [5,24] Ω, yielding the output power in the range [6, 28.8] W and the experimental efficiencies going from 72.1% (for 24 Ω) to 91.7% (for 5 Ω). The developed system can also be effectively used to deliver up to 35 W output power to variable loads, as demonstrated during the battery charging test. Finally, an excellent output voltage regulation is ascertained for load transients between 5 Ω and 24 Ω, with limited over- and undershoot amplitudes (less than 3% of the nominal output voltage), thus enabling the use of the proposed system for both fixed and variable loads in the framework of smart homes and workplaces applications.


2021 ◽  
Vol 13 (1) ◽  
pp. 6
Author(s):  
Yiming Zhang ◽  
Zhiwei Shen ◽  
Yuanchao Wu ◽  
Hui Wang ◽  
Wenbin Pan

Wireless power transfer (WPT) for electric vehicles is an emerging technology and a future trend. To increase power density, the coupling coefficient of coils can be designed to be large, forming a strongly coupled WPT system, different from the conventional loosely coupled WPT system. In this way, the power density and efficiency of the WPT system can be improved. This paper investigates the dual-side phase-shift control of the strongly coupled series–series compensated WPT systems. The mathematical models based on the conventional first harmonic approximation and differential equations for the dual-side phase-shift control are built and compared. The dual-side phase-shift angle and its impact on the power transfer direction and soft switching are investigated. It is found that synchronous rectification at strong couplings can lead to hard switching because the dual-side phase shift in this case is over 90°. In comparison, a relatively high efficiency and soft switching can be realized when the dual-side phase shift is below 90°. The experimental results have validated the analysis.


Energies ◽  
2020 ◽  
Vol 13 (11) ◽  
pp. 2836
Author(s):  
Nuraina Syahira Mohd Sharifuddin ◽  
Nadia M. L. Tan ◽  
Hirofumi Akagi

This paper presents the performance of a three-phase bidirectional isolated DC-DC converter (3P-BIDC) in wye-wye (Yy), wye-delta (Yd), delta-wye (Dy), and delta-delta (Dd) transformer configurations, using enhanced switching strategy that combines phase-shift modulation and burst-mode switching. A simulation verification using PSCAD is carried out to study the feasibility and compare the efficiency performance of the 3P-BIDC with each transformer configuration, using intermittent switching, which combines the conventional phase-shift modulation (PSM) and burst-mode switching, in the light load condition. The model is tested with continuous switching that employs the conventional PSM from medium to high loads (greater than 0.3 p.u.) and with intermittent switching at light load (less than 0.3 p.u), in different transformer configurations. In all tests, the DC-link voltages are equal to the transformer turns ratio of 1:1. This paper also presents the power loss estimation in continuous and intermittent switching to verify the modelled losses in the 3P-BIDC in the Yy transformer configuration. The 3P-BIDC is modelled by taking into account the effects that on-state voltage drop in the insulated-gate bipolar transistor (IGBTs) and diodes, snubber capacitors, and three-phase transformer copper winding resistances will have on the conduction and switching losses, and copper losses in the 3P-BIDC. The intermitting switching improves the efficiency of the DC-DC converter with Yy, Yd, Dy, and Dd connections in light-load operation. The 3P-BIDC has the best efficiency performance using Yy and Dd transformer configurations for all power transfer conditions in continuous and intermittent switching. Moreover, the highest efficiency of 99.6% is achieved at the light power transfer of 0.29 p.u. in Yy and Dd transformer configurations. However, the theoretical current stress in the 3P-BIDC with a Dd transformer configuration is high. Operation of the converter with Dy transformer configuration is less favorable due to the efficiency achievements of lower than 95%, despite burst-mode switching being applied.


Sign in / Sign up

Export Citation Format

Share Document