Tribological Behavior of AZ91–Al2O3 Composites by Powder Metallurgy

Author(s):  
N. Keerthivasan ◽  
S. Selvaraj ◽  
V. Anandakrishnan ◽  
E. Thayumanvan
2018 ◽  
Vol 70 (6) ◽  
pp. 1066-1071 ◽  
Author(s):  
Saravanan C. ◽  
Subramanian K. ◽  
Anandakrishnan V. ◽  
Sathish S.

Purpose Aluminium is the most preferred material in engineering structural components because of its excellent properties. Furthermore, the properties of aluminium may be enhanced through metal matrix composites and an in-depth investigation on the evolved properties is needed in view of metallurgical, mechanical and tribological aspects. The purpose of this study is to explore the effect of TiC addition on the tribological behavior of aluminium composites. Design/methodology/approach Aluminium metal matrix composites at different weight percentage of titanium carbide were produced through powder metallurgy. Produced composites were subjected to sliding wear test under dry condition through Taguchi’s L9 orthogonal design. Findings Optimal process condition to achieve the minimum wear rate was identified though the main effect plot. Sliding velocity was identified as the most dominating factor in the wear resistance. Practical implications The production of components with improved properties is promoted efficiently and economically by synthesizing the composite via powder metallurgy. Originality/value Though the investigations on the wear behavior of aluminium composites are analyzed, reinforcement types and the mode of fabrication have their significance in the metallurgical and mechanical properties. Thus, the produced component needs an in-detail study on the property evolution.


2013 ◽  
Vol 668 ◽  
pp. 3-8 ◽  
Author(s):  
Jian Rong Sun ◽  
Chang Sheng Li ◽  
Hua Tang ◽  
Zhi Cheng Guo ◽  
Jin Ying Zi Liu

The composites of Ni-W-Cr-Fe-Cu-MoS2-Graphite with nano-MoS2 were prepared by powder metallurgy. Its tribological properties were investigated using the UTM-2 Nano+Micro Tribometer from room temperature to 600°C. The effects of amount of MoS2 and Ni-W-Cr prealloy powder, load, and temperature on the tribological properties were investigated and discussed. The results indicated that the addition of 43~45wt.% Ni-W-Cr prealloy powder had a strengthening effect on the hardness, anti-press and tensile strength. The tensile strength of the composite decreases with the addition of Nano-MoS2 and graphite, and the friction coefficient decrease with increase of the additives over the wide temperature range of 25°C∼600°C. The friction coefficients and wear rates of the composites reach the optimization value at 2.5wt.% MoS2,While its wear rates increase with the increasing temperature and load.


2013 ◽  
Vol 685 ◽  
pp. 24-29
Author(s):  
Y. Şahin ◽  
K. Emre Öksüz

Al2124-20wt.% SiCp composites were prepared by powder metallurgy (PM) method and investigated the tribological behavior of MMCs. S/N ratio analysis and analysis of variance (ANOVA) were employed to investigate which design parameters significantly affected the wear of the composites. The hardness of the matrix alloy increased from 44.2 HRB up to 87 HRB when reinforced with SiC particles. The ANOVA results showed that the hardness exerted the greatest effect on the wear, followed by the abrasive size.


2019 ◽  
Vol 60 (3) ◽  
pp. 274-281 ◽  
Author(s):  
Norul Amierah Binti Nor Zamani ◽  
AKM Asif Iqbal ◽  
Dewan Muhammad Nuruzzaman

2019 ◽  
Vol 55 (2) ◽  
pp. 227-234 ◽  
Author(s):  
D.-B. Wei ◽  
H.-X. Liang ◽  
S.-Q. Li ◽  
F.-K. Li ◽  
F. Ding ◽  
...  

In the present paper, plasma surface alloying was implemented on powder metallurgy gears to improve its wear resistance based on double glow plasma surface metallurgy technology. A W-Mo alloy coating was obtained in the process. The morphology, microstructure and phase composition were investigated by SEM, EDS and XRD. The hardness was examined by Vickers hardness test and nanoindentation test. The tribological behavior of powder metallurgy gears before and after plasma surface alloying was evaluated on a ball-on-disc reciprocating sliding tribometer under dry sliding condition at room temperature. The results indicate that the W-Mo alloy coating is homogeneous without defects, which includes deposition layer and interdiffusion layer. The average microhardness of powder metallurgy gears before and after plasma surface alloying is 145.8 HV0.1 and 344.4 HV0.1, respectively; Nano hardness of deposition layer and interdiffusion layer is 5.76 GPa, 14.35 GPa, respectively. The specific wear rate of W-Mo alloy coating is lower than original PM gears. The wear mechanism of W-Mo alloy coating is slight adhesive wear. The W-Mo alloy coating prepared by double glow plasma surface alloying technology can effectively improve wear resistance of powder metallurgy gears.


2008 ◽  
Vol 51 ◽  
pp. 99-104
Author(s):  
Jian Li ◽  
Yong Zhen Zhang ◽  
Peng Li ◽  
Bao Shangguan ◽  
San Ming Du

Dry sliding tests with electric current were carried out on a pin-on-disc system tribometer in this study, where copper-base powder metallurgy material and copper alloy QCr0.5 were used as the pin and the disc respectively. The researches were aimed at exploring relation between tribological properties and current stability of the couple under different loads. The results indicate that the current stability and friction coefficient increases with current and load. Moreover, co-effect between the current stability and tribological behavior has been found, which behaves in the way that the higher the current stability, the higher dynamic current collection capability and tribological properties.


Sign in / Sign up

Export Citation Format

Share Document