Effect of Temperature and Pressure on the Leakage Flow Characteristics of the Bent Axis Hydro-Motors—An Experimental Study

Author(s):  
Ajit Kumar Pandey ◽  
Alok Vardhan ◽  
Yash Kumar ◽  
K. Dasgupta
2019 ◽  
Vol 330 ◽  
pp. 16-23 ◽  
Author(s):  
Rahman Zeynali ◽  
Kamran Ghasemzadeh ◽  
Alireza Behrooz Sarand ◽  
Farshad Kheiri ◽  
Angelo Basile

2021 ◽  
Vol 108 ◽  
pp. 106377
Author(s):  
Mohammed Faheem ◽  
Aqib Khan ◽  
Rakesh Kumar ◽  
Sher Afghan Khan ◽  
Waqar Asrar ◽  
...  

2021 ◽  
Vol 774 (1) ◽  
pp. 012087
Author(s):  
S J Kim ◽  
Y S Choi ◽  
Y Cho ◽  
J W Choi ◽  
J J Hyun ◽  
...  

2020 ◽  
Vol 117 ◽  
pp. 107965
Author(s):  
M.Yu. Petrushina ◽  
E.S. Dedova ◽  
K.V. Yusenko ◽  
A.S. Portnyagin ◽  
E.K. Papynov ◽  
...  

2019 ◽  
Vol 125 ◽  
pp. 92-101 ◽  
Author(s):  
Shuaiwei Gu ◽  
Yuxing Li ◽  
Lin Teng ◽  
Cailin Wang ◽  
Qihui Hu ◽  
...  

Water ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 2189
Author(s):  
Tingchao Yu ◽  
Xiangqiu Zhang ◽  
Iran E. Lima Neto ◽  
Tuqiao Zhang ◽  
Yu Shao ◽  
...  

The traditional orifice discharge formula used to estimate the flow rate through a leak opening at a pipe wall often produces inaccurate results. This paper reports an original experimental study in which the influence of orifice-to-pipe diameter ratio on leakage flow rate was investigated for several internal/external flow conditions and orifice holes with different shapes. The results revealed that orifice-to-pipe diameter ratio (or pipe wall curvature) indeed influenced the leakage flow, with the discharge coefficient ( C d ) presenting a wide variation (0.60–0.85). As the orifice-to-pipe diameter ratio decreased, the values of C d systematically decreased from about 12% to 3%. Overall, the values of C d also decreased with β (ratio of pressure head differential at the orifice to wall thickness), as observed in previous studies. On the other hand, orifice shape, main pipe flow velocity, and external medium (water or air) all had a secondary effect on C d . The results obtained in the present study not only demonstrated that orifice-to-pipe diameter ratio affects the outflow, but also that real scale pipes may exhibit a relevant deviation of C d from the classical range (0.61–0.67) reported in the literature.


1952 ◽  
Vol 44 (1) ◽  
pp. 211-212 ◽  
Author(s):  
E. J. Bradbury ◽  
Dorothy McNulty ◽  
R. I. Savage ◽  
E. E. McSweeney

2017 ◽  
Vol 100 ◽  
pp. 283-291 ◽  
Author(s):  
Mingjun Wang ◽  
Di Liu ◽  
Yan Xiang ◽  
Shijie Cui ◽  
G.H. Su ◽  
...  

1992 ◽  
Vol 276 ◽  
Author(s):  
D-G. Oei ◽  
S. L. McCarthy

ABSTRACTMeasurements of the residual stress in polysilicon films made by Low Pressure Chemical Vapor Deposition (LPCVD) at different deposition pressures and temperatures are reported. The stress behavior of phosphorus (P)-ion implanted/annealed polysilicon films is also reported. Within the temperature range of deposition, 580 °C to 650 °C, the stress vs deposition temperature plot exhibits a transition region in which the stress of the film changes from highly compressive to highly tensile and back to highly compressive as the deposition temperature increases. This behavior was observed in films that were made by the LPCVD process at reduced pressures of 210 and 320 mTORR. At deposition temperatures below 590 °C the deposit is predominantly amorphous, and the film is highly compressive; at temperatures above 610 °C (110) oriented polycrystalline silicon is formed exhibiting high compressive residual stress.


Sign in / Sign up

Export Citation Format

Share Document