Quality of Service Based Multimedia Data Transmission in Multi-constraint Environment

Author(s):  
Krishan Kumar ◽  
Rajender Kumar ◽  
Amit Kant Pandit
Author(s):  
Senthil Kumar K Pa, Et. al.

Detection and classifications of the haze affected image is important for the real time multimedia data transmission and reception in remote mode in order to improve the quality of the received image or video sequences. In this paper, Convolutional Neural Networks (CNN) classification approach is used with Shearlet Transform for the detection and segmentation of haze affected images.The image to be tested for haze pattern detection is preprocessed and then it is decomposed with shearlet transform. The features are computed from the shearlet transform decomposed coefficients and then these computed features are classified by the deep learning CNN for identifying the haze affected images. This proposed haze classification method is tested on both indoor and outdoor environmental images.


Author(s):  
Julio Aráuz

On the stage of today’s communications world, broadband mobile technologies are a continuously flourishing trend. In this context, WiMAX, a technology based on the IEEE 802.16 standards, currently plays a noteworthy role. Throughout the chapter we survey current literature related to the delivery of multimedia data in WiMAX systems and, most importantly, identify research areas in which promising improvement opportunities exist. We start by portraying how both market and technical conditions have encouraged the adoption of WiMAX, and then, by building upon a fundamentals introduction, we focus on issues related to capacity and frame assembly. We also identify relevant aspects related to scheduling and mapping between user applications and WiMAX services. We close the chapter with a discussion on quality of service in wireless systems and visit the mathematical background of opportunistic scheduling for WiMAX.


Author(s):  
Christos Bouras ◽  
Apostolos Gkamas ◽  
Dimitris Primpas ◽  
Kostas Stamos

IP networks are built around the idea of best effort networking, which makes no guarantees regarding the delivery, speed, and accuracy of the transmitted data. While this model is suitable for a large number of applications, and works well for almost all applications when the network load is low (and therefore there is no congestion), there are two main factors that lead to the need for an additional capability of quality of service guarantees. One is the fact that an increasing number of Internet applications are related to real-time and other multimedia data, which have greater service requirements in order to be satisfying to the user. The other is that Internet usage is steadily increasing, and although the network infrastructure is also updated often, it is not always certain that network resource offerings will be ahead of usage demand. In order to deal with this situation, IETF has developed two architectures in order to enable QoS-based handling of data flows in IP networks. This article describes and compares these two architectures.


2013 ◽  
Vol 2013 ◽  
pp. 1-12 ◽  
Author(s):  
Hind Alwan ◽  
Anjali Agarwal

With the growing demand for quality-of-service (QoS) aware routing protocol in wireless networks, QoS-based routing has emerged as an interesting research topic. Quality of service guarantee in wireless sensor networks (WSNs) is difficult and more challenging due to the fact that the available resources of sensors and the various applications running over these networks have different constraints in their nature and requirements. In this paper, we present a heuristic neighbor selection mechanism in WSNs that uses the geographic routing mechanism combined with the QoS requirements to provide multiobjective QoS routing (MQoSR) for different application requirements. The problem of providing QoS routing is formulated as link, and path-based metrics. The link-based metrics are partitioned in terms of reliability, delay, distance to sink, and energy, and the path-based metrics are presented in terms of end-to-end delay, reliability of data transmission, and network lifetime. The simulation results demonstrate that MQoSR protocol is able to achieve the delay requirements, and due to optimum path selection process, the achieved data delivery ratio is always above the required one. MQoSR protocol outperforms the existing model in the literature remarkably in terms of reliable data transmission, time data delivery, and routing overhead and underlines the importance of energy-efficient solution to enhance network lifetime.


Author(s):  
M. Nisha ◽  
S. Poongavanam

<p>There has been an increasing attentiveness in the uses of sensor networks. Because sensors are normally controlled in on-board power supply, proficient supervision of the network is essential in improving the life of the sensor.<strong> </strong>The majority research protocols objective at offering link breakage reducing and mitigating from the same. Yet, selecting the well-organized communication do all the beneficial to the transmission process thus demonstrating better improvement in the network performance. In this article, we propose Best Communication Node Election for well-organized Path in Flat Topology The main goal of this<strong> </strong>work is to choose the best data transmission node in flat topology for improve the multi hop routing. This scheme, the best communication node selection based on Path Metric and this Path Metric is measured by the packet obtained rate, dropped rate, latency rate and node energy. This scheme provide guarantees quality of Service in the network.</p>


Sign in / Sign up

Export Citation Format

Share Document