Influence of Air Supply Outlet on Displacement Ventilation System for Relic Preservation Area in Archaeology Museum

Author(s):  
Juan Li ◽  
Xilian Luo ◽  
Bin Chang ◽  
Zhaolin Gu
2010 ◽  
Vol 160-162 ◽  
pp. 294-300
Author(s):  
Ling Wang ◽  
Wei Yang Qi ◽  
Ri Chao Liu ◽  
Shun Jun He

Using the method of computational fluid dynamics (CFD), numerically simulates office building with chilling ceiling /displacement ventilation (CC/DV) and analyzes indoor airflow velocity field, temperature field and thermal stratification height of the building. Consider that the CC/DV system can improve indoor air quality and save energy. And the CC/DV system could solve many constraints of displacement ventilation system. when the cooling load is large, due to the limit of air supply and temperature supply the displacement ventilation system can not be used, but the CC/DV system could well satisfied the requirement of body. The CC/DV system also has the problem of lower thermal stratification height because the chilling ceiling has a lower temperature.


Author(s):  
Joseph Bickson ◽  
David Yantek ◽  
Justin Srednicki ◽  
Jacob Carr ◽  
Cory DeGennaro ◽  
...  

Abstract Federal regulations require the installation of refuge alternatives (RAs) in underground coal mines to ensure miners’ survivability after a fire or an explosion where escape is impractical or even impossible. Both fires and explosions can generate dangerous or even lethal levels of carbon monoxide (CO) in a mine. As part of their function, RAs must be able to isolate miners from a CO-contaminated mine environment and to purge any CO that might enter the RA as miners enter it. In 2018, researchers from the National Institute for Occupational Safety and Health (NIOSH) conducted purging research in a built-in-place (BIP) RA with a borehole air supply by testing 12 different mixing ventilation system configurations (MVSCs). Recently, NIOSH researchers evaluated the use of a thermal displacement ventilation system configuration (TDVSC) to purge a 60-person BIP RA using a borehole air supply. As in previous research, NIOSH researchers tested the TDVSC with the flow rates of 750 SCFM and then 1,000 SCFM. For each of the flow rates, the results showed that the average purge time for the more expensive TDVSC is within two minutes of the average purge times of previously tested MVSCs. Manufacturers can use this information to not only pursue 30 CFR Part 7 approval from the Mine Safety and Health Administration (MSHA), but also to determine the most practical method to purge contaminants inside RAs.


2005 ◽  
Vol 40 (8) ◽  
pp. 1051-1067 ◽  
Author(s):  
Zhang Lin ◽  
T.T. Chow ◽  
C.F. Tsang ◽  
K.F. Fong ◽  
L.S. Chan

2021 ◽  
Vol 2069 (1) ◽  
pp. 012096
Author(s):  
Wenyu Lin ◽  
Tao Zhang ◽  
Xiaohua Liu ◽  
Lingshan Li

Abstract It is important to strictly maintain the indoor thermal environment in ice arenas which have very different features to other commercial buildings. Separated air distribution system is widely used to create a dry and cold environment near the ice and a comfortable environment in the view stand. The warm and humid air from the view stand may lead to uneven temperature and humidity distribution in the rink, leading to extra energy consumption, even fog and frost on the ice. Unreasonable air supply in the ice rink zone will also make the spectators feel too cold and uncomfortable. Jet ventilation system is the most extensively used system in the ice rink zone. An innovative ground displacement ventilation system is proposed in the National Aquatics Centre, which will serve as the venue for the curling competition in the 2022 Beijing Winter Olympics. On-site measurement in the arena is carried out and computational fluid dynamics (CFD) simulation method is adopted in the present research. Measured thermal environment above the ice with different ventilation systems are compared and analysed. Result shows that the displacement ventilation system features a more obvious vertical stratification than jet ventilation system in this kind of large space buildings, and thus is more energy-efficient. A CFD model of the ice cube is setup and verified by measured data. The thermal environment in the ice rink with displacement ventilation under extreme condition is studied using the simulation method. The temperature and humidity in the ice field increases by 10.1 °C, 4.5 g/kg without air supply in the view stand, proving that the spectators in the view stand have a great impact on the thermal environment in the ice field.


2013 ◽  
Vol 319 ◽  
pp. 599-604
Author(s):  
Makhsuda Juraeva ◽  
Kyung Jin Ryu ◽  
Sang Hyun Jeong ◽  
Dong Joo Song

A computational model of existing Seoul subway tunnelwas analyzed in this research. The computational model was comprised of one natural ventilationshaft, two mechanical ventilationshafts, one mechanical airsupply, a twin-track tunnel, and a train. Understanding the flow pattern of the train-induced airflow in the tunnel was necessary to improve ventilation performance. The research objective wasto improve the air quality in the tunnel by investigating train-induced airflow in the twin-track subway tunnel numerically. The numerical analysis characterized the aerodynamic behavior and performance of the ventilation system by solving three-dimensional turbulent Reynolds-averaged Navier-Stokes equations. ANSYS CFX software was used for the computations. The ventilation and aerodynamic characteristics in the tunnel were investigated by analyzing the mass flowrateat the exits of the ventilation mechanicalshafts. As the train passed the mechanical ventilation shafts, the amount of discharged-air in the ventilationshafts decreased rapidly. The air at the exits of the ventilation shafts was gradually recovered with time, after the train passed the ventilation shafts. The developed mechanical air-supply for discharging dusty air and supplying clean airwas investigated.The computational results showed that the developed mechanical air-supplycould improve the air quality in the tunnel.


2012 ◽  
Vol 52 ◽  
pp. 119-128 ◽  
Author(s):  
Han-Qing Wang ◽  
Chun-Hua Huang ◽  
Di Liu ◽  
Fu-Yun Zhao ◽  
Hai-Bo Sun ◽  
...  

Author(s):  
Seyed Ali Keshavarz ◽  
Mazyar Salmanzadeh ◽  
Goodarz Ahmadi

Recently, attention has been given to indoor air quality due to its serious health concerns. Clearly the dispersion of pollutant is directly affected by the airflow patterns. The airflow in indoor environment is the results of a combination of several factors. In the present study, the effects of thermal plume and respiration on the indoor air quality in a ventilated cubicle were investigated using an unsteady computational modeling approach. The person-to-person contaminant transports in a ventilated room with mixing and displacement ventilation systems were studied. The effects of rotational motion of the heated manikins were also analyzed. Simulation results showed that in the cases which rotational motion was included, the human thermal plume and associated particle transport were significantly distorted. The distortion was more noticeable for the displacement ventilation system. Also it was found that the displacement ventilation system lowered the risk of person-to-person transmission in an office space in comparison with the mixing ventilation system. On the other hand the mixing system was shown to be more effective compared to the displacement ventilation in removing the particles and pollutant that entered the room through the inlet air diffuser.


Author(s):  
Edgar C. Ambos ◽  
Evan Neil V. Ambos ◽  
Lanndon A. Ocampo

Due to its significant role in improving indoor air quality, displacement ventilation system is widely adopted in current literature. This paper proposes a displacement ventilation system for room conditions with ceilings that are relatively low, internal heat load could be high, walls could be sunlit, and occupants doing the low physical activity. These conditions are prevalent in the Philippines, being a tropical country. Input parameters to the design process such as heat load, the height of the ceiling, comfort, and indoor air quality requirements were generated, and the main output parameters are the stratification height and ventilation airflow rate. To demonstrate the proposed displacement ventilation system, four cases were generated. Results show that the ventilation airflow rates obtained from the four cases were greater than the minimum outdoor air requirements for health in conference rooms and large assembly areas which are 17.5 and 3.5 liters/sec*person respectively, for smoking and no smoking rooms.


Sign in / Sign up

Export Citation Format

Share Document