A Brief Review on Utilization of Hybrid Nanofluid in Heat Exchangers: Theoretical and Experimental

Author(s):  
Haziqatulhanis Ibrahim ◽  
Norazlianie Sazali ◽  
Ahmad Shahir Jamaludin ◽  
Wan Norharyati Wan Salleh ◽  
M. H. D. Othman
2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Faraz Afshari ◽  
Azim Doğuş Tuncer ◽  
Adnan Sözen ◽  
Halil Ibrahim Variyenli ◽  
Ataollah Khanlari ◽  
...  

Purpose Using suspended nanoparticles in the base fluid is known as one of the most efficient ways for heat transfer augmentation and improving the thermal efficiency of various heat exchangers. Different types of nanofluids are available and used in different applications. The main purpose of this study is to investigate the effects of using hybrid nanofluid and number of plates on the performance of plate heat exchanger. In this study, TiO2/water single nanofluid and TiO2-Al2O3/water hybrid nanofluid with 1% particle weight ratio have been used to prepare hybrid nanofluid to use in plate type heat exchangers with three various number of plates including 8, 12 and 16. Design/methodology/approach The experiments have been conducted with the aim of examining the impact of plates number and used nanofluids on heat transfer enhancement. The performance tests have been done at 40°C, 45°C, 50°C and 55°C set outlet temperatures and in five various Reynolds numbers between 1,600 and 3,800. Also, numerical simulation has been applied to verify the heat and flow behavior inside the heat exchangers. Findings The results indicated that using both nanofluids raised the thermal performance of all tested exchangers which have a various number of plates. While the major outcomes of this study showed that TiO2-Al2O3/water hybrid nanofluid has priority when compared to TiO2/water single type nanofluid. Utilization of TiO2-Al2O3/water nanofluid led to obtaining an average improvement of 7.5%, 9.6% and 12.3% in heat transfer of heat exchangers with 8, 12 and 16 plates, respectively. Originality/value In the present work, experimental and numerical analyzes have been conducted to investigate the influence of using TiO2-Al2O3/water hybrid nanofluid in various plate heat exchangers. The attained findings showed successful utilization of TiO2-Al2O3/water nanofluid. Based on the obtained results increasing the number of plates in the heat exchanger caused to obtain more increment by using both types of nanofluids.


2021 ◽  
Vol 9 ◽  
Author(s):  
Misagh Irandoost Shahrestani ◽  
Ehsan Houshfar ◽  
Mehdi Ashjaee ◽  
Payam Allahvirdizadeh

Utilizing nanofluids in heat exchangers can lead to improved thermal performance. Nanofluids with suspended carbon nanotubes are specifically desirable in thermal systems because of their unique capabilities. In this study, convective heat transfer and required pumping power are studied simultaneously for a helical coiled heat exchanger with laminar water flow while incorporating 0.1 and 0.3 percent volume fraction of the hybrid nanofluid MWCNT + Fe3O4/water. Two different geometries of bare and ribbed tubes are used for the heat exchanger part. The ribs are chosen to be orthogonal, i.e., 90° with respect to the inclined ones. Three different Reynolds numbers are selected for investigation, all in laminar flow regime based on the non-dimensional M number defined in coiled tubes. Computational fluid dynamics is used to study thermal and fluid behavior of the problem. The convective heat transfer coefficient can serve as a criterion to measure the effectiveness of utilizing nanofluids in heat exchangers by taking the pressure drop and pumping power of the system into consideration. Finally, the artificial neural network curve fitting tool of MATLAB is used to make a good fit in the data range of the problem. It is shown that for most cases of the study, the pumping power ratio is less than 1 that can be considered appropriate from energy consumption viewpoint.


Author(s):  
C. H. Carter ◽  
J. E. Lane ◽  
J. Bentley ◽  
R. F. Davis

Silicon carbide (SiC) is the generic name for a material which is produced and fabricated by a number of processing routes. One of the three SiC materials investigated at NCSU is Norton Company's NC-430, which is produced by reaction-bonding of Si vapor with a porous SiC host which also contains free C. The Si combines with the free C to form additional SiC and a second phase of free Si. Chemical vapor deposition (CVD) of CH3SiCI3 onto a graphite substrate was employed to produce the second SiC investigated. This process yielded a theoretically dense polycrystalline material with highly oriented grains. The third SiC was a pressureless sintered material (SOHIO Hexoloy) which contains B and excess C as sintering additives. These materials are candidates for applications such as components for gas turbine, adiabatic diesel and sterling engines, recouperators and heat exchangers.


2016 ◽  
Vol 41 ◽  
pp. 268-271
Author(s):  
Luca Alberti ◽  
Adriana Angelotti ◽  
Matteo Antelmi ◽  
Ivana La Licata

Food Chain ◽  
2015 ◽  
Vol 5 (1-2) ◽  
pp. 91-104 ◽  
Author(s):  
Andrew Marchant ◽  
Andrew Graffham ◽  
Lateef Sanni ◽  
Idowu Adeoya

Sign in / Sign up

Export Citation Format

Share Document