scholarly journals Convective Heat Transfer and Pumping Power Analysis of MWCNT + Fe3O4/Water Hybrid Nanofluid in a Helical Coiled Heat Exchanger with Orthogonal Rib Turbulators

2021 ◽  
Vol 9 ◽  
Author(s):  
Misagh Irandoost Shahrestani ◽  
Ehsan Houshfar ◽  
Mehdi Ashjaee ◽  
Payam Allahvirdizadeh

Utilizing nanofluids in heat exchangers can lead to improved thermal performance. Nanofluids with suspended carbon nanotubes are specifically desirable in thermal systems because of their unique capabilities. In this study, convective heat transfer and required pumping power are studied simultaneously for a helical coiled heat exchanger with laminar water flow while incorporating 0.1 and 0.3 percent volume fraction of the hybrid nanofluid MWCNT + Fe3O4/water. Two different geometries of bare and ribbed tubes are used for the heat exchanger part. The ribs are chosen to be orthogonal, i.e., 90° with respect to the inclined ones. Three different Reynolds numbers are selected for investigation, all in laminar flow regime based on the non-dimensional M number defined in coiled tubes. Computational fluid dynamics is used to study thermal and fluid behavior of the problem. The convective heat transfer coefficient can serve as a criterion to measure the effectiveness of utilizing nanofluids in heat exchangers by taking the pressure drop and pumping power of the system into consideration. Finally, the artificial neural network curve fitting tool of MATLAB is used to make a good fit in the data range of the problem. It is shown that for most cases of the study, the pumping power ratio is less than 1 that can be considered appropriate from energy consumption viewpoint.

2020 ◽  
Vol 50 (4) ◽  
pp. 321-327
Author(s):  
Md Insiat Islam Rabby ◽  
Farzad Hossain ◽  
S.A.M. Shafwat Amin ◽  
Tazeen Afrin Mumu ◽  
MD Ashraf Hossain Bhuiyan ◽  
...  

A numerical study of laminar forced convection heat transfer for the fully developed region inside a circular pipe filled with Si based nanoparticle is presented for investigating the parameters of heat transfer. Four Si based nanoparticles Si, SiC, SiO2, Si3N4 with 1-5% volume fraction have been mixed with water to prepare nanofluids which is used for working fluid to flow over a circular pipe with 5mm diameter and 700mm length. Heat transfer characteristics and pumping power have been calculated at fully developed region with constant heat flux condition on pipe wall to identify the heat transfer enhancement ratio and pumping power reduction ratio among base fluid water and each nanofluids. It is worth mentioning that utilizing SiC nanoparticle shows not only the highest increment of Nusselt number and convective heat transfer coefficient but also the highest decrement of pumping power requirement and FOM in comparison to the base fluid.


Author(s):  
N. Ashrafi ◽  
Y. Bashirzadeh

The present experimental study reports on enhancement of heat transfer by addition of nanoparticles to the working fluid of commercial swimming pool heat exchangers under laminar flow condition. Three different concentrations of Titanium dioxide nanoparticles were added to the water as working fluid of a typical forced convective heat exchanger used to transfer heat to public swimming pools. The experimental setup is capable of measuring velocity, heat transfer rate, and temperature at different points. TiO2 nanoparticles with mean diameter of 20 nm were used. The effects of concentration of suspended nanoparticles and that of Reynolds number on forced convective heat transfer were investigated. It is observed that at 0.1%, 0.5% and 1% weight concentration of suspended TiO2 nanoparticles, the average convective heat transfer coefficient improved by 1.1%, 15.9% and 31.6% respectively. The coefficient is further increased at higher Reynolds numbers. The efficiency of heat exchanger is evaluated for different scenarios.


2006 ◽  
Vol 129 (6) ◽  
pp. 697-704 ◽  
Author(s):  
A. G. Agwu Nnanna

This paper presents a systematic experimental method of studying the heat transfer behavior of buoyancy-driven nanofluids. The presence of nanoparticles in buoyancy-driven flows affects the thermophysical properties of the fluid and consequently alters the rate of heat transfer. The focus of this paper is to estimate the range of volume fractions that results in maximum thermal enhancement and the impact of volume fraction on Nusselt number. The test cell for the nanofluid is a two-dimensional rectangular enclosure with differentially heated vertical walls and adiabatic horizontal walls filled with 27 nm Al2O3–H2O nanofluid. Simulations were performed to measure the transient and steady-state thermal response of nanofluid to imposed isothermal condition. The volume fraction is varied between 0% and 8%. It is observed that the trend of the temporal and spatial evolution of temperature profile for the nanofluid mimics that of the carrier fluid. Hence, the behaviors of both fluids are similar. Results shows that for small volume fraction, 0.2⩽ϕ⩽2% the presence of the nanoparticles does not impede the free convective heat transfer, rather it augments the rate of heat transfer. However, for large volume fraction ϕ>2%, the convective heat transfer coefficient declines due to reduction in the Rayleigh number caused by increase in kinematic viscosity. Also, an empirical correlation for Nuϕ as a function of ϕ and Ra has been developed, and it is observed that the nanoparticle enhances heat transfer rate even at a small volume fraction.


1997 ◽  
Vol 119 (2) ◽  
pp. 348-356 ◽  
Author(s):  
J. L. Hoke ◽  
A. M. Clausing ◽  
T. D. Swofford

An experimental investigation of the air-side convective heat transfer from wire-on-tube heat exchangers is described. The study is motivated by the desire to predict the performance, in a forced flow, of the steel wire-on-tube condensers used in most refrigerators. Previous investigations of wire-on-tube heat exchangers in a forced flow have not been reported in the literature. The many geometrical parameters (wire diameter, tube diameter, wire pitch, tube pitch, etc.), the complex conductive paths in the heat exchanger, and the importance of buoyant forces in a portion of the velocity regime of interest make the study a formidable one. A key to the successful correlation of the experimental results is a definition of the convective heat transfer coefficient, hw, that accounts for the temperature gradients in the wires as well as the vast difference in the two key characteristic lengths—the tube and wire diameters. Although this definition results in the need to solve a transcendental equation in order to obtain hw from the experimental data, the use of the resulting empirical correlation is straightforward. The complex influence of the mixed convection regime on the heat transfer from wire-on-tube heat exchangers is shown, as well as the effects of air velocity and the angle of attack. The study covers a velocity range of 0 to 2 m/s (the Reynolds number based on wire diameter extends to 200) and angles of attack varying from 0 deg (horizontal coils) to ±90 deg. Heat transfer data from seven different wire-on-tube heat exchangers are correlated so that 95 percent of the data below a Richardson number of 0.004, based on the wire diameter, lie within ±16.7 percent of the proposed correlation.


2008 ◽  
Vol 07 (06) ◽  
pp. 325-331 ◽  
Author(s):  
S. M. SOHEL MURSHED ◽  
KAI CHOONG LEONG ◽  
CHUN YANG ◽  
NAM-TRUNG NGUYEN

This paper reports an experimental investigation into force convective heat transfer of nanofluids flowing through a cylindrical minichannel under laminar flow and constant wall heat flux conditions. Sample nanofluids were prepared by dispersing different volumetric concentrations (0.2–0.8%) of nanoparticles in deionized water. The results showed that both the convective heat transfer coefficient and the Nusselt number of the nanofluid increase considerably with the nanoparticle volume fraction as well as the Reynolds number. Along with the enhanced thermal conductivity of nanofluids, the migration, interactions, and Brownian motion of nanoparticles and the resulting disturbance of the boundary layer are responsible for the observed enhancement of heat transfer coefficients of nanofluids.


Author(s):  
Shafi Noor ◽  
M. Monjurul Ehsan ◽  
M. S. Mayeed ◽  
A. K. M. Sadrul Islam

Convective heat transfer rate for turbulent flow using nanofluid through both plain and corrugated channel has been investigated numerically in the present study. Three different types of nanofluids namely Al2O3-water, TiO2-water and CuO-water of different volume fractions (1%, 2%, 3%, 4% and 5%), are used as the working fluid flowing through the channel. The corrugated channels have wall geometries of trapezoidal shape of different amplitude-wavelength ratios. Grid independence study was carried out for all the geometries. The obtained results in case of base fluid-water flowing through parallel plate channel have been validated with well-established correlations. The study has been conducted by finite volume method to solve the transport equation for the momentum, energy and turbulence quantities using single phase model of the nanofluids where the thermophysical properties of the nanofluids are calculated by using different correlations from the literature. In this study, the heat transfer enhancement using nanofluids compared to that using base fluid-water is presented for a range of Reynolds number- 15000 to 40000. The pumping power required for the flow through the channels increases with the increase in the viscosity of the fluid which justifies the increase in pumping power requirement in case of nanofluids compared to that with water. While using corrugation at the wall of the channels, in addition to the enhancement in the convective heat transfer rate, there is an increase in the pumping power requirement for the same Reynolds number. However, for a given requirement of heat transfer rate, the required pumping power can be reduced by using nanofluids. This study includes the trend and limit of volume fraction of nanofluid during this pumping power reduction phenomenon. The results show that with the increase in the volume fraction of the nanofluids, the convective heat transfer rate increases which is same for all the geometries of the fluid domain. Addition of nanofluid reduces the pumping power requirement for a constant heat transfer rate. The volume fraction of the nanofluids with which the maximum reduction of pumping power takes place at the optimum working condition is also found in the present study. This study draws a comparison among three different nanofluids in terms of the enhancement in the convective heat transfer rate and corresponding pumping power requirement for the flow through the trapezoidal shaped corrugated channel of various amplitude-wavelength ratios in order to find out the best nanofluids for its optimum results within a specified range of working conditions.


2015 ◽  
Vol 37 ◽  
pp. 141
Author(s):  
Farhad Vahidinia ◽  
Behrooz Keshtegar ◽  
Mohadeseh Miri

In this paper, the statistical analysis of the effect of nanoparticles volume fraction on one of the most important thermal characteristics turbulent flow of nanofluid i.e. convection heat transfer coefficient, inside a circular tube with uniform wall heat flux is investigated numerically. Also, water as a base fluid and Al2O3 as suspended particles with a diameter of 36 nm are considered. Heat transfer characteristics are computed using the solution of elliptic equations based on discrete the finite volume method and the second order upwind. The relationship between pressure and velocity using SIMPLEC algorithm is established. In this study, the variation of volume fraction of nanoparticles is assumed in the range of 0 to 6%. The best probability distribution function of the heat transfer parameters are selected using chi square test that various probability distribution such as: Gamma, Normal, Lognormal, Gumbel, and Frechet are evaluated based on numerical analysis of tube flow. After reviewing the results, it was found that with increasing volume fraction of nanoparticles, the convective heat transfer coefficient increases. On the other hand, the convective heat transfer coefficients with regard to variation of volume fraction of nanoparticles follow Gumbel Max probability distribution function.


2018 ◽  
Vol 19 (1) ◽  
pp. 251-269 ◽  
Author(s):  
Hossein Fatahian ◽  
Hesamoddin Salarian ◽  
Majid Eshagh Nimvari ◽  
Esmaeel Fatahian

The present study investigated the thermal effects of the use of nanoparticles in the fuel-oil and water-based fluids, as well as the numerical simulation of laminar flow of fuel-oil-alumina and the water-alumina nanofluids in a channel. A second order discretization method was used for solving equations and a SIMPLE algorithm was applied for pressure-velocity coupling using Fluent. Effect of nanoparticle volume fraction and particles size in different Reynolds numbers (900≤Re≤2100) on the convective heat transfer coefficient was studied. The simulation was conducted for three different volume fractions and particle sizes in the laminar flow under constant heat flux. The results showed that adding nanoparticles to the base fluid caused an increase in the thermal conductivity ratio of the fluid, which was observed to a greater degree in the fuel oil-alumina nanofluid than in the water-alumina nanofluid. The increase in nanoparticle volume fraction caused an increase in the convective heat transfer coefficient and the Nusselt number of the nanofluids. The significant point of this study was that in the same volume fraction, the effect of adding alumina nanoparticles to the fuel-oil-based fluid had more effect than adding these particles to water-based fluid, while the effect of increasing the Reynolds number in the water-alumina nanofluid on convective heat transfer coefficient was greater than the fuel-oil-alumina. Also, in the same Reynolds number and volume fraction with increasing size of nanoparticles, the value of the convective heat transfer coefficient was decreased. The results of this study can be used in refineries and petrochemical industries where the fuel-oil fluid flows in the channels. ABSTRAK: Kajian ini adalah bagi mengkaji kesan haba terhadap penggunaan bahan bakar-minyak dan cecair asas-air dalam nanopartikel, juga menjalankan simulasi pengiraan aliran laminar bahan bakar-minyak-alumina dan cecair-nano air-alumina dalam saluran. Kaedah berasingan kelas kedua telah digunakan bagi menyelesaikan persamaan dan algoritma SIMPLE telah diaplikasikan dalam gandingan kelajuan-tekanan menggunakan Fluent. Kesan jumlah pecahan nanopartikel dan pelbagai bilangan saiz zarah dalam bilangan Reynolds (900≤Re≤2100) pada pekali pemindahan haba perolakan telah dikaji. Simulasi telah dijalankan pada tiga pecahan isipadu berlainan dan pada zarah dalam aliran laminar dengan fluks haba tetap. Hasil kajian menunjukkan bahawa dengan penambahan nanopartikel dalam cecair-asas menyebabkan peningkatan nisbah daya pengaliran haba cecair pada cecair-nano bahan bakar-minyak-alumina melebihi daripada cecair-nano air-alumina. Penambahan pada pecahan isipadu nanopartikel ini menyebabkan peningkatan pada nilai pekali pemindahan haba perolakan dan bilangan Nusselt dalam cecair-nano. Perkara penting dalam kajian ini adalah pada pecahan isipadu sama, kesan penambahan nanopartikel alumina kepada cecair berasaskan minyak mempunyai kesan yang lebih besar daripada penambahan zarah-zarah ini kepada cecair berasaskan air. Pada masa sama, kesan peningkatan bilangan Reynolds dalam cecair-nano air-alumina pada pekali pemindahan haba perolakan lebih besar daripada kesan peningkatan bahan bakar-minyak-alumina. Selain itu, pada bilangan Reynolds yang sama dan dengan peningkatan saiz nanopartikel pecahan isipadu, nilai pekali pemindahan haba perolakan turut menurun. Hasil kajian ini boleh digunakan dalam industri penapisan dan petrokimia di mana bahan bakar cecair minyak mengalir dalam saluran.


Author(s):  
Alessandro Franco ◽  
Carlo Bartoli

The aim of this paper is to expose the main involved physical phenomena underlying the alteration of convective heat transfer in a heat exchanger subjected to imposed vibrations. This technique seems to have interesting features and industrial applications, such as efficiency increase, heat transfer rate control and cleanliness action. However, a clear description and comprehension of how vibrations may alter the convective heat transfer coefficient in a heat exchanger is no still reached due to the complexity of the involved physical mechanisms. For this reason, after a presentation and a schematisation of the analyzed thermodynamic system, the fundamental alterations of the thermo-fluid dynamics fields are described. Then, the main involved physical phenomena are exposed for the three cases of gaseous, monophasic liquid and boiling liquid mediums. Finally, on the basis of the characteristics of these described phenomena, some considerations and indications of general validity are presented.


Author(s):  
A. G. Agwu Nnanna

The presence of nanoparticles in buoyancy-driven flows affects the thermophysical properties of the fluid and consequently alters the rate of heat transfer. The focus of this paper is to estimate the range of volume fractions that results in maximum thermal enhancement in buoyancy-driven nanofluids. In this study, a two-dimensional rectangular enclosure with isothermal vertical walls and adiabatic horizontal surface is filled with 27nm Al2O3 - H2O nanofluid. The volume fraction is varied between 0 to 12%. Results shows that for small volume fraction, 0.2≤Φ≤2%, the presence of the nanoparticles does not impede the free convective heat transfer, rather it augments the rate of heat transfer. However, for large volume fraction, Φ>2%, the convective heat transfer coefficient declines due to reduction in the Rayleigh number but the rate of thermal diffusion is enhanced.


Sign in / Sign up

Export Citation Format

Share Document