Image Segmentation Using Deep Learning Techniques in Medical Images

Author(s):  
Mamta Mittal ◽  
Maanak Arora ◽  
Tushar Pandey ◽  
Lalit Mohan Goyal
2019 ◽  
Vol 32 (4) ◽  
pp. 582-596 ◽  
Author(s):  
Mohammad Hesam Hesamian ◽  
Wenjing Jia ◽  
Xiangjian He ◽  
Paul Kennedy

2020 ◽  
Vol 237 (12) ◽  
pp. 1438-1441
Author(s):  
Soenke Langner ◽  
Ebba Beller ◽  
Felix Streckenbach

AbstractMedical images play an important role in ophthalmology and radiology. Medical image analysis has greatly benefited from the application of “deep learning” techniques in clinical and experimental radiology. Clinical applications and their relevance for radiological imaging in ophthalmology are presented.


Author(s):  
R. S. M. Lakshmi Patibandla ◽  
V. Lakshman Narayana ◽  
Arepalli Peda Gopi ◽  
B. Tarakeswara Rao

2019 ◽  
Vol 52 (4) ◽  
pp. 1-35 ◽  
Author(s):  
Swarnendu Ghosh ◽  
Nibaran Das ◽  
Ishita Das ◽  
Ujjwal Maulik

Author(s):  
Tomasz Rymarczyk ◽  
Barbara Stefaniak ◽  
Przemysław Adamkiewicz

The solution shows the architecture of the system collecting and analyzing data. There was tried to develop algorithms to image segmentation. These algorithms are needed to identify arbitrary number of phases for the segmentation problem. With the use of algorithms such as the level set method, neural networks and deep learning methods, it can obtain a quicker diagnosis and automatically marking areas of the interest region in medical images.


Recently, the demand for computer vision techniques is continuously rising because of the development of techniques in decision making pertaining to health sector. Image processing is a subset of computer vision which makes use of algorithms to perform vision emulation to recognize objects. In this study a novel convolutional neural network is configured based on deep learning to classifying Chest x-ray images into five major classes. It addresses an issue of insufficiency in medical images for employing deep learning for image classification. A new augmentation technique superimposing of images helps to generate more new samples from the available images using label-preserving transformations. Data augmentation technique can generate new sample data from the original data using various transforming strategies. Therefore the data augmentation technique helps in accumulating enough data for processing to obtain better performance. The main objective of superimposing of two images is to minimize redundancy and uncertainty in the output image. Therefore the superimposing carried out with original image and a set of various augmented image to obtain better accuracy. Later results of various superimposing techniques are compared and evaluated to demonstrate the better techniques. It is concluded that the proposed techniques can obtain better performance in medical image classification problem.


2021 ◽  
Vol 11 (3) ◽  
pp. 202-207
Author(s):  
Kittipat Sriwong ◽  
◽  
Kittisak Kerdprasop ◽  
Nittaya Kerdprasop

Currently, computational modeling methods based on machine learning techniques in medical imaging are gaining more and more interests from health science researchers and practitioners. The high interest is due to efficiency of modern algorithms such as convolutional neural networks (CNN) and other types of deep learning. CNN is the most popular deep learning algorithm because of its prominent capability on learning key features from images that help capturing the correct class of images. Moreover, several sophisticated CNN architectures with many learning layers are available in the cloud computing environment. In this study, we are interested in performing empirical research work to compare performance of CNNs when they are dealing with noisy medical images. We design a comparative study to observe performance of the AlexNet CNN model on classifying diseases from medical images of two types: images with noise and images without noise. For the case of noisy images, the data had been further separated into two groups: a group of images that noises harmoniously cover the area of the disease symptoms (NIH) and a group of images that noises do not harmoniously cover the area of the disease symptoms (NNIH). The experimental results reveal that NNIH has insignificant effect toward the performance of CNN. For the group of NIH, we notice some effect of noise on CNN learning performance. In NIH group of images, the data preparation process before learning can improve the efficiency of CNN.


2020 ◽  
Vol 64 (2) ◽  
pp. 20508-1-20508-12 ◽  
Author(s):  
Getao Du ◽  
Xu Cao ◽  
Jimin Liang ◽  
Xueli Chen ◽  
Yonghua Zhan

Abstract Medical image analysis is performed by analyzing images obtained by medical imaging systems to solve clinical problems. The purpose is to extract effective information and improve the level of clinical diagnosis. In recent years, automatic segmentation based on deep learning (DL) methods has been widely used, where a neural network can automatically learn image features, which is in sharp contrast with the traditional manual learning method. U-net is one of the most important semantic segmentation frameworks for a convolutional neural network (CNN). It is widely used in the medical image analysis domain for lesion segmentation, anatomical segmentation, and classification. The advantage of this network framework is that it can not only accurately segment the desired feature target and effectively process and objectively evaluate medical images but also help to improve accuracy in the diagnosis by medical images. Therefore, this article presents a literature review of medical image segmentation based on U-net, focusing on the successful segmentation experience of U-net for different lesion regions in six medical imaging systems. Along with the latest advances in DL, this article introduces the method of combining the original U-net architecture with deep learning and a method for improving the U-net network.


Sign in / Sign up

Export Citation Format

Share Document