scholarly journals NEURAL NETWORK AND CONVOLUTIONAL ALGORITH TO EXTRACT SHAPES BY E-MEDICUS APPLICATION

Author(s):  
Tomasz Rymarczyk ◽  
Barbara Stefaniak ◽  
Przemysław Adamkiewicz

The solution shows the architecture of the system collecting and analyzing data. There was tried to develop algorithms to image segmentation. These algorithms are needed to identify arbitrary number of phases for the segmentation problem. With the use of algorithms such as the level set method, neural networks and deep learning methods, it can obtain a quicker diagnosis and automatically marking areas of the interest region in medical images.

Author(s):  
Tomasz Rymarczyk

In this work, there were implemented methods to analyze and segmentation medical images by using different kind of algorithms. The solution shows the architecture of the system collecting and analyzing data. There was tried to develop an algorithm for level set method applied to piecewise constant image segmentation. These algorithms are needed to identify arbitrary number of phases for the segmentation problem. With the use of modern algorithms, it can obtain a quicker diagnosis and automatically marking areas of the interest region in medical images.


2021 ◽  
Vol 419 ◽  
pp. 108-125
Author(s):  
Yunyun Yang ◽  
Ruicheng Xie ◽  
Wenjing Jia ◽  
Zhaoyang Chen ◽  
Yunna Yang ◽  
...  

2021 ◽  
Vol 5 (3) ◽  
pp. 584-593
Author(s):  
Naufal Hilmiaji ◽  
Kemas Muslim Lhaksmana ◽  
Mahendra Dwifebri Purbolaksono

especially with the advancement of deep learning methods for text classification. Despite some effort to identify emotion on Indonesian tweets, its performance evaluation results have not achieved acceptable numbers. To solve this problem, this paper implements a classification model using a convolutional neural network (CNN), which has demonstrated expected performance in text classification. To easily compare with the previous research, this classification is performed on the same dataset, which consists of 4,403 tweets in Indonesian that were labeled using five different emotion classes: anger, fear, joy, love, and sadness. The performance evaluation results achieve the precision, recall, and F1-score at respectively 90.1%, 90.3%, and 90.2%, while the highest accuracy achieves 89.8%. These results outperform previous research that classifies the same classification on the same dataset.


2018 ◽  
Vol 8 (9) ◽  
pp. 1826-1834
Author(s):  
Tian Chi Zhang ◽  
Jian Pei Zhang ◽  
Jing Zhang ◽  
Melvyn L. Smith

One of the most established region-based segmentation methods is the region based C-V model. This method formulates the image segmentation problem as a level set or improved level set clustering problem. However, the existing level set C-V model fails to perform well in the presence of noisy and incomplete data or when there is similarity between the objects and background, especially for clustering or segmentation tasks in medical images where objects appear vague and poorly contrasted in greyscale. In this paper, we modify the level set C-V model using a two-step modified Nash equilibrium approach. Firstly, a standard deviation using an entropy payoff approach is employed and secondly a two-step similarity clustering based approach is applied to the modified Nash equilibrium. One represents a maximum similarity within the clustered regions and the other the minimum similarity between the clusters. Finally, an improved C-V model based on a two-step modified Nash equilibrium is proposed to smooth the object contour during the image segmentation. Experiments demonstrate that the proposed method has good performance for segmenting noisy and poorly contrasting regions within medical images.


Author(s):  
Dong-Dong Chen ◽  
Wei Wang ◽  
Wei Gao ◽  
Zhi-Hua Zhou

Deep neural networks have witnessed great successes in various real applications, but it requires a large number of labeled data for training. In this paper, we propose tri-net, a deep neural network which is able to use massive unlabeled data to help learning with limited labeled data. We consider model initialization, diversity augmentation and pseudo-label editing simultaneously. In our work, we utilize output smearing to initialize modules, use fine-tuning on labeled data to augment diversity and eliminate unstable pseudo-labels to alleviate the influence of suspicious pseudo-labeled data. Experiments show that our method achieves the best performance in comparison with state-of-the-art semi-supervised deep learning methods. In particular, it achieves 8.30% error rate on CIFAR-10 by using only 4000 labeled examples.


2021 ◽  
Vol 15 (3) ◽  
pp. 1-21
Author(s):  
Jie Jiang ◽  
Qiuqiang Kong ◽  
Mark D. Plumbley ◽  
Nigel Gilbert ◽  
Mark Hoogendoorn ◽  
...  

Energy disaggregation, a.k.a. Non-Intrusive Load Monitoring, aims to separate the energy consumption of individual appliances from the readings of a mains power meter measuring the total energy consumption of, e.g., a whole house. Energy consumption of individual appliances can be useful in many applications, e.g., providing appliance-level feedback to the end users to help them understand their energy consumption and ultimately save energy. Recently, with the availability of large-scale energy consumption datasets, various neural network models such as convolutional neural networks and recurrent neural networks have been investigated to solve the energy disaggregation problem. Neural network models can learn complex patterns from large amounts of data and have been shown to outperform the traditional machine learning methods such as variants of hidden Markov models. However, current neural network methods for energy disaggregation are either computational expensive or are not capable of handling long-term dependencies. In this article, we investigate the application of the recently developed WaveNet models for the task of energy disaggregation. Based on a real-world energy dataset collected from 20 households over 2 years, we show that WaveNet models outperforms the state-of-the-art deep learning methods proposed in the literature for energy disaggregation in terms of both error measures and computational cost. On the basis of energy disaggregation, we then investigate the performance of two deep-learning based frameworks for the task of on/off detection which aims at estimating whether an appliance is in operation or not. The first framework obtains the on/off states of an appliance by binarising the predictions of a regression model trained for energy disaggregation, while the second framework obtains the on/off states of an appliance by directly training a binary classifier with binarised energy readings of the appliance serving as the target values. Based on the same dataset, we show that for the task of on/off detection the second framework, i.e., directly training a binary classifier, achieves better performance in terms of F1 score.


2020 ◽  
Vol 64 (2) ◽  
pp. 20508-1-20508-12 ◽  
Author(s):  
Getao Du ◽  
Xu Cao ◽  
Jimin Liang ◽  
Xueli Chen ◽  
Yonghua Zhan

Abstract Medical image analysis is performed by analyzing images obtained by medical imaging systems to solve clinical problems. The purpose is to extract effective information and improve the level of clinical diagnosis. In recent years, automatic segmentation based on deep learning (DL) methods has been widely used, where a neural network can automatically learn image features, which is in sharp contrast with the traditional manual learning method. U-net is one of the most important semantic segmentation frameworks for a convolutional neural network (CNN). It is widely used in the medical image analysis domain for lesion segmentation, anatomical segmentation, and classification. The advantage of this network framework is that it can not only accurately segment the desired feature target and effectively process and objectively evaluate medical images but also help to improve accuracy in the diagnosis by medical images. Therefore, this article presents a literature review of medical image segmentation based on U-net, focusing on the successful segmentation experience of U-net for different lesion regions in six medical imaging systems. Along with the latest advances in DL, this article introduces the method of combining the original U-net architecture with deep learning and a method for improving the U-net network.


2018 ◽  
Author(s):  
Lifei Wang ◽  
Rui Nie ◽  
Ruyue Xin ◽  
Jiang Zhang ◽  
Jun Cai

AbstractRecently deep learning methods have been applied to process biological data and greatly pushed the development of the biological research forward. However, the interpretability of the deep learning methods still needs to improve. Here for the first time, we present scCapsNet, a totally interpretable deep learning model adapted from CapsNet. The scCapsNet model retains the capsule parts of CapsNet but replaces the part of convolutional neural networks with several parallel fully connected neural networks. We apply scCapsNet to scRNA-seq data. The results show that scCapsNet performs well as a classifier and also that the parallel fully connected neural networks function like feature extractors as we supposed. The scCapsNet model provides contribution of each extracted feature to the cell type recognition. Evidences show that some extracted features are nearly orthogonal to each other. After training, through analysis of the internal weights of each neural network connected inputs and primary capsule, and with the information about the contribution of each extracted feature to the cell type recognition, the scCapsNet model could relate gene sets from inputs to cell types. The specific gene set is responsible for the identification of its corresponding cell types but does not affect the recognition of other cell types by the model. Many well-studied cell type markers are in the gene set with corresponding cell type. The internal weights of neural network for those well-studied cell type markers are different for different primary capsules. The internal weights of neural network connected to a primary capsule could be viewed as an embedding for genes, convert genes to real value low dimensional vectors. Furthermore, we mix the RNA expression data of two cells with different cell types and then use the scCapsNet model trained with non-mixed data to predict the cell types in the mixed data. Our scCapsNet model could predict cell types in a cell mixture with high accuracy.


2021 ◽  
Author(s):  
Eliska Chalupova ◽  
Ondrej Vaculik ◽  
Filip Jozefov ◽  
Jakub Polacek ◽  
Tomas Majtner ◽  
...  

Background: The recent big data revolution in Genomics, coupled with the emergence of Deep Learning as a set of powerful machine learning methods, has shifted the standard practices of machine learning for Genomics. Even though Deep Learning methods such as Convolutional Neural Networks (CNNs) and Recurrent Neural Networks (RNNs) are becoming widespread in Genomics, developing and training such models is outside the ability of most researchers in the field. Results: Here we present ENNGene - Easy Neural Network model building tool for Genomics. This tool simplifies training of custom CNN or hybrid CNN-RNN models on genomic data via an easy-to-use Graphical User Interface. ENNGene allows multiple input branches, including sequence, evolutionary conservation, and secondary structure, and performs all the necessary preprocessing steps, allowing simple input such as genomic coordinates. The network architecture is selected and fully customized by the user, from the number and types of the layers to each layer's precise set-up. ENNGene then deals with all steps of training and evaluation of the model, exporting valuable metrics such as multi-class ROC and precision-recall curve plots or TensorBoard log files. To facilitate interpretation of the predicted results, we deploy Integrated Gradients, providing the user with a graphical representation of an attribution level of each input position. To showcase the usage of ENNGene, we train multiple models on the RBP24 dataset, quickly reaching the state of the art while improving the performance on more than half of the proteins by including the evolutionary conservation score and tuning the network per protein. Conclusions: As the role of DL in big data analysis in the near future is indisputable, it is important to make it available for a broader range of researchers. We believe that an easy-to-use tool such as ENNGene can allow Genomics researchers without a background in Computational Sciences to harness the power of DL to gain better insights into and extract important information from the large amounts of data available in the field.


Sign in / Sign up

Export Citation Format

Share Document