Limit Load on Ground with Heterogeneous Soil

Author(s):  
Chuanzhi Huang
2018 ◽  
Vol 15 (1) ◽  
pp. 59
Author(s):  
NAZRUL AZMI AHMAD ZAMRI ◽  
CLOTILDA PETRUS ◽  
AZMI IBRAHIM ◽  
HANIZAH AB HAMID

The application of concrete filled steel tubes (CFSTs) as composite members has widely been used around the world and is becoming popular day by day for structural application especially in earthquake regions. This paper indicates that an experimental study was conducted to comprehend the behaviour of T-stub end plates connected to concrete filled thin-walled steel tube (CFTST) with different types of bolts and are subjected to pullout load. The bolts used are normal type bolt M20 grade 8.8 and Lindapter Hollo-bolt HB16 and HB20. A series of 10 mm thick T-stub end plates were fastened to 2 mm CFTST of 200 mm x 200 mm in cross-section. All of the specimens were subjected to monotonic pull-out load until failure. Based on test results, the Lidapter Hollo-bolts showed better performance compare to normal bolts. The highest ultimate limit load for T-stub end plate fasten with Lindapter Hollo-bolt is four times higher than with normal bolt although all end plates show similar behaviour and failure mode patterns. It can be concluded that T-stub end plate with Lindapter Hollo-bolt shows a better performance in the service limit and ultimate limit states according to the regulations in the design codes.


2004 ◽  
Vol 68 (2) ◽  
pp. 346 ◽  
Author(s):  
Keijan Wu ◽  
Naoise Nunan ◽  
John W. Crawford ◽  
Iain M. Young ◽  
Karl Ritz

Geosciences ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 29
Author(s):  
Ogochukwu Ozotta ◽  
Philip J. Gerla

The transport of dissolved minerals and groundwater flow plays a crucial role in the ecosystem of many wetlands. Nonetheless, installing equipment to monitor groundwater seepage is invasive, harms vegetation, and can impact biodiversity. By remotely mapping surface temperature in late summer, when there is the greatest difference between warm soil and cold groundwater, temperature patterns can expose areas with the greatest upward gradient and flow. The conventional method of using tensiometers to measure hydraulic gradient and estimate flux using Darcy’s law was applied and compared with thermal imaging to characterize groundwater seepage at two contrasting sites within a central North Dakota fen (groundwater discharge wetland). Both sites exhibited variable gradients between the shallow and deep tensiometers. The temperature trend determined from the thermal imaging showed a closer relationship to the measured hydraulic gradients at the herbaceous (Sedge) site than at the wooded (Willow) site. Saturated hydraulic conductivity K ranged from 6 × 10−5 to 2 × 10−4 m/s for the Willow site; and 6 × 10−6 to 1 × 10−4 m/s for Sedge site. The flux calculated for the Willow site ranged from 1.4 × 10−5 to 2.7 × 10−4 m/s and that of the Sedge site ranged from 2.2 × 10−6 to 6.3 × 10−5 m/s. The gradients are affected at shallow depth because of heterogeneous soil stratigraphy, which is likely the reason that seepage faces at the sites cannot be mapped solely by thermal imaging.


Author(s):  
Changyu Zhou ◽  
Bo Wang ◽  
Zhigang Sun ◽  
Jilin Xue ◽  
Xiaohua He

High temperature pressure pipes are widely used in power stations, nuclear power plants, and petroleum refinery, which always bear combined effects of high temperature, high pressure, and corrosive media, so the local pits are the most common volume defects in pressure pipe. Due to various reasons, the defects usually appear on the internal or external wall of pipe. In this paper, the dimensions of a defect were characterized as three dimensionless factors: relative depth, relative gradient and relative length. The main objects of study were the pipe with an internal pit and pipe with an external pit. Orthogonal array testing of three factors at four different levels was applied to analyze the sequence of the influence of three parameters. In present study, when the maximum principal strain nearby the location of the defects reaches 2%, the corresponding load is defined as the limit load, which is classified as two kinds of load type: limit pressure and limit bending moment. According to this strain criterion and isochronous stress strain data of P91 steel, the limit load of high temperature pipe with a local pit was determined by using ABAQUS. And in the same load condition of the pipe with the same dimensionless factors, the limit load of the internal defected pipe was compared with that of the external defected pipe. The results of this study can provide a reference for safety assessment and structural integrity analysis of high temperature creep pressure pipe with pit defects.


1989 ◽  
Vol 111 (1) ◽  
pp. 11-19 ◽  
Author(s):  
A. Brückner-foit ◽  
R. Grunmach ◽  
D. Munz
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document