Embodiment of an Efficient Brown’s Gas Compound Fuel Tank

Author(s):  
K. A. Alex Luke ◽  
J. Arun ◽  
R. Hemanth Prasanna ◽  
Ashish Selokar
Keyword(s):  
1999 ◽  
Author(s):  
G. Kinnes ◽  
P. Jensen ◽  
K. Mead ◽  
D. Watkins ◽  
L. Smith ◽  
...  

Author(s):  
Liudas Mažeika ◽  
Rymantas Kažys ◽  
Renaldas Raišutis ◽  
Andriejus Demčenko ◽  
Reimondas Sliteris

2020 ◽  
Vol 15 ◽  
Author(s):  
Jin Li ◽  
Xingsheng Jiang ◽  
Jingye Li ◽  
Yadong Zhao ◽  
Xuexing Li

Background: In the whole design process of modular fuel tank, there are some unreasonable phenomena. As a result, there are some defects in the design of modular fuel tank, and the function does not meet the requirements in advance. This paper studies this problem. Objective: Through on-the-spot investigation of the factory, a mechanical design process model is designed. The model can provide reference for product design participants on product design time and design quality, and can effectively solve the problem of low product design quality caused by unreasonable product design time arrangement. Methods: After sorting out the data from the factory investigation, computer software is used to program, simulate the information input of mechanical design process, and the final reference value is got. Results: This mechanical design process model is used to guide the design and production of a new project, nearly 3 months ahead of the original project completion time. Conclusion: This mechanical design process model can effectively guide the product design process, which is of great significance to the whole mechanical design field.


2019 ◽  
Vol 88 (4) ◽  
pp. 235-239
Author(s):  
Yuki CHIHARA ◽  
Kohei HIRANO ◽  
Kenji MAKIHARA ◽  
Motoaki TAKASHIMA

Author(s):  
D Rohini ◽  
R Abinaya ◽  
D Lokesharun ◽  
K Karthik ◽  
V Sovishnuchringth ◽  
...  

2021 ◽  
Author(s):  
R. S. Laddha ◽  
P. B. Buchade ◽  
A. D. Shaligram

2021 ◽  
Vol 9 (1) ◽  
pp. 36
Author(s):  
Dong-Ha Lee ◽  
Seung-Joo Cha ◽  
Jeong-Dae Kim ◽  
Jeong-Hyeon Kim ◽  
Seul-Kee Kim ◽  
...  

Because environmentally-friendly fuels such as natural gas and hydrogen are primarily stored in the form of cryogenic liquids to enable efficient transportation, the demand for cryogenic fuel (LNG, LH) ships has been increasing as the primary carriers of environmentally-friendly fuels. In such ships, insulation systems must be used to prevent heat inflow to the tank to suppress the generation of boil-off gas (BOG). The presence of BOG can lead to an increased internal pressure, and thus, its control and prediction are key aspects in the design of fuel tanks. In this regard, although the thermal analysis of the phase change through a finite element analysis requires less computational time than that implemented through computational fluid dynamics, the former is relatively more error-prone. Therefore, in this study, a cryogenic fuel tank to be incorporated in ships was established, and the boil-off rate (BOR), measured considering liquid nitrogen, was compared with that obtained using the finite element method. Insulation material with a cubic structure was applied to the cylindrical tank to increase the insulation performance and space efficiency. To predict the BOR through finite element analysis, the effective thermal conductivity was calculated through an empirical correlation and applied to the designed fuel tank. The calculation was predicted to within 1% of the minimum error, and the internal fluid behavior was evaluated by analyzing the vertical temperature profile according to the filling ratio.


Sign in / Sign up

Export Citation Format

Share Document