Potential of Marine Clay for Cement Replacement and Pozzolanic Additive in Concrete

Author(s):  
Hongjian Du ◽  
Anjaneya Dixit ◽  
Sze Dai Pang
2020 ◽  
Vol 71 (7) ◽  
pp. 775-788
Author(s):  
Quyet Truong Van ◽  
Sang Nguyen Thanh

The utilisation of supplementary cementitious materials (SCMs) is widespread in the concrete industry because of the performance benefits and economic. Ground granulated blast furnace slag (GGBFS) and fly ash (FA) have been used as the SCMs in concrete for reducing the weight of cement and improving durability properties. In this study, GGBFS at different cement replacement ratios of 0%, 20%, 40% and 60% by weight were used in fine-grained concrete. The ternary binders containing GGBFS and FA at cement replacement ratio of 60% by weight have also evaluated. Flexural and compressive strength test, rapid chloride permeability test and under-water abrasion test were performed. Experimental results show that the increase in concrete strength with GGBFS contents from 20% to 40% but at a higher period of maturity (56 days and more). The chloride permeability the under-water abrasion reduced with the increasing cement replacement by GGBFS or a combination of GGBFS and FA


Author(s):  
Bengt Fellenius

On April 4, 2018, 209 days after driving, a static loading test was performed on a 50 m long, strain-gage instrumented, square 275-mm diameter, precast, shaft-bearing (“floating”) pile in Göteborg, Sweden. The soil profile consisted of a 90 m thick, soft, postglacial, marine clay. The groundwater table was at about 1.0 m depth. The undrained shear strength was about 20 kPa at 10 m depth and increased linearly to about 80 kPa at 55m depth. The load-distribution at the peak load correlated to an average effective stress beta-coefficient of 0.19 along the pile or, alternatively, a unit shaft shear resistance of 15 kPa at 10 m depth increasing to about 65 kPa at 50 m depth, indicating an α-coefficient of about 0.80. Prior to the test, geotechnical engineers around the world were invited to predict the load-movement curve to be established in the test—22 predictions from 10 countries were received. The predictions of pile stiffness, and pile head displacement showed considerable scatter, however. Predicted peak loads ranged from 65% to 200% of the actual 1,800-kN peak-load, and 35% to 300% of the load at 22-mm movement.


2020 ◽  
Vol 20 (6) ◽  
pp. 04020050
Author(s):  
Huayang Lei ◽  
Jinfeng Lou ◽  
Xin Li ◽  
Mingjing Jiang ◽  
Cike Tu

Author(s):  
Fátima Arroyo Torralvo ◽  
Constantino Fernandez-Pereira ◽  
Carlos Leiva Fernandez ◽  
Yolanda Luna Galiano ◽  
Celia García Arenas ◽  
...  
Keyword(s):  
Fly Ash ◽  

Author(s):  
Xiaobing Li ◽  
Jianpeng Chen ◽  
Xiuqing Hu ◽  
Hongtao Fu ◽  
Jun Wang ◽  
...  

2021 ◽  
Vol 224 ◽  
pp. 108747
Author(s):  
Jun Wang ◽  
Ming Dai ◽  
Yuanqiang Cai ◽  
Lin Guo ◽  
Yunguo Du ◽  
...  

2021 ◽  
Author(s):  
Hailei Kou ◽  
Hao Jing ◽  
Chuangzhou Wu ◽  
Pengpeng Ni ◽  
Yiyi Wang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document