scholarly journals Mix proportion for medium grade concrete with silica fume as cement replacement for general purpose construction

2021 ◽  
Vol 1101 (1) ◽  
pp. 012013
Author(s):  
A Rashidi ◽  
M I S Mohammad Zain ◽  
R Ahmadi
Fibers ◽  
2019 ◽  
Vol 7 (4) ◽  
pp. 36 ◽  
Author(s):  
Hisham Alabduljabbar ◽  
Rayed Alyousef ◽  
Fahed Alrshoudi ◽  
Abdulaziz Alaskar ◽  
Ahmed Fathi ◽  
...  

The behaviors of the fresh and mechanical properties of self-compacting concrete (SCC) are different from those of normal concrete mix. Previous research has investigated the benefits of this concrete mix by incorporating different constituent materials. The current research aims to develop a steel fiber reinforcement (SFR)‒SCC mixture and to study the effectiveness of different cement replacement materials (CRMs) on the fresh and mechanical properties of the SFR‒SCC mixtures. CRMs have been used to replace cement content, and the use of different water/cement ratios may lower the cost of CRMs, which include microwave-incinerated rice husk ash, silica fume, and fly ash. Fresh behavior, such as flow and filling ability and capacity segregation, was examined by a special test in SCC on the basis of their specifications. Moreover, compressive and splitting tensile strength tests were determined to simulate the hardened behavior for the concrete specimens. Experimental findings showed that, the V-funnel and L-box were within the accepted range for SCC. Tensile and flexural strength increases upon the use of 10% silica fume were found when compared with other groups; the ideal percentage of steel fiber that should be combined in this hybrid was 2% of the total weight of the binder. Overall, steel fibers generated a heightened compressive and splitting tensile strength in the self-compacting concrete mixes.


2020 ◽  
Vol 10 (22) ◽  
pp. 8058
Author(s):  
Samia Tariq ◽  
Allan N. Scott ◽  
James R. Mackechnie ◽  
Vineet Shah

The transport characteristics of waste glass powder incorporated self-compacting concrete (SCC) for a number of different durability indicators are reported in this paper. SCC mixes were cast at a water to binder ratio of 0.4 using glass powders with a mean particle size of 10, 20 and 40 µm and at cement replacement levels of 20, 30 and 40%. The oxygen permeability, electrical resistivity, porosity and chloride diffusivity were measured at different ages from 3 to 545 days of curing. The amount and particle size of the incorporated waste glass powder was found to influence the durability properties of SCC. The glass incorporated SCC mixes showed similar or better durability characteristics compared to general purpose (GP) and fly ash mixes at similar cement replacement level. A significant improvement in the transport properties of the glass SCC mixes was observed beyond 90 days.


2016 ◽  
Vol 857 ◽  
pp. 36-40 ◽  
Author(s):  
Kumar S. Rajesh ◽  
Amiya K. Samanta ◽  
Dilip K. Singha Roy

This investigation is focused on the physical and mechanical properties of Alccofine (AF) incorporating silica fume (SF) on M20 grade concrete. Normally, these industrial wastes (SF) are disposed off in landfill. The use of these industrial waste in concrete could reduce waste in the environment as well helps the environment against pollution as it is known that one ton of cement manufacture released one ton of carbon dioxide to the environment .Alccofine is a new replacement material on which very limited research has been done, its effect with flyash has been studied. The current study is a new experimental research undertaken to study the effect of alccofine on SF based concrete. Alccofine was varied in percentages of 0, 5, 10 and 15%, Silica fume was varied in percentages of 0, 5, 10, 15 % The aim of the investigation was to see the effect of alccofine on compressive strength of concrete and do a comparison on 7, and 28 days strength.The results showed that the cement replacement by 10% of alccofine gives higher values when compared with all other mix. The cement replacement by 10% alccofine gave a good improvement in compressive strength. Alccofine has the better performance when compare to the other slag material. It is helpful to make concrete workable


Minerals ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 992
Author(s):  
Andrijana Nedeljković ◽  
Marija Stojmenović ◽  
Jelena Gulicovski ◽  
Nenad Ristić ◽  
Sonja Milićević ◽  
...  

Numerous factors influence the complexity of environmental and waste management problems, and the most significant goal is the reuse of materials that have completed their “life cycle” and the reduction in the use of new resources. In order to reduce impact of waste slag on the environment, in the present study, waste slag, generated in heating plants after lignite combustion, was characterized in detail and tested for application as a replacement for cement in mortar or concrete production. For physical–chemical characterization of slag, different experimental and instrumental techniques were used such as chemical composition and determination of the content of heavy metals, investigation of morphological and textural properties, thermal analysis, X-ray, and infrared spectroscopy. Physical–mechanical characterization of slag was also performed and included determination of activity index, water requirement, setting time and soundness. A leaching test was also performed. Presented results show that waste slag may be used in mortar and concrete production as a partial cement replacement, but after additional combustion at 650 °C and partial replacement of slag with silica fume in the minimal amount of 12%. The maximal obtained cement replacement was 20% (17.8% slag and 2.2% of silica fume).


2012 ◽  
Vol 2290 (1) ◽  
pp. 130-138 ◽  
Author(s):  
Narayanan Neithalath ◽  
Hieu T. Cam

The use of a coarse limestone powder (median particle size of approximately 70 μm, five times larger than cement particles) as a cement replacement material results in a dilution effect. The magnitude of strength and transport property reduction is found to be greater than the magnitude of the cement replacement level. In this paper, methodologies to proportion concrete containing 10% to 15% of coarse limestone powder, in which the dilution effect is compensated through a combination of reduction in water-to-powder ratio and addition of 5% of silica fume, are discussed. Limestone–silica fume blended concretes at a reduced water-to-powder ratio (0.37 or 0.34, depending on limestone replacement level) show similar or higher 56-day compressive strengths than does the benchmark plain concrete with a water-to-cement ratio of 0.40. The rapid chloride permeability and non–steady state migration values of the modified concretes are evaluated along with their pore structure parameter extracted from electrical impedance data. The impact of water-to-powder reduction and silica fume incorporation is quantified through this pore structure parameter.


Sign in / Sign up

Export Citation Format

Share Document