Analysis of Transmission Spectra of a Metal–Liquid Crystal–Metal Waveguide Structure with Different Metallic Layers

Author(s):  
Ronak Dadhich ◽  
Ritu Sharma
2019 ◽  
Vol 9 (4) ◽  
pp. 644
Author(s):  
Xue-Shi Li ◽  
Naixing Feng ◽  
Yuan-Mei Xu ◽  
Liang-Lun Cheng ◽  
Qing Liu

A tunable demultiplexer with three output channels infiltrated by liquid crystal (LC) is presented, which is based on a metal-insulator-metal (MIM) waveguide. The operating frequencies of the three output channels can be tuned simultaneously at will by changing the external bias electric field applied to the LC. By analyzing the Fabry-Pérot (FP) resonance modes of the finite-length MIM waveguide both theoretically and numerically, the locations of the three channels are delicately determined to achieve the best demultiplexing effects. Terahertz (THz) signals input from the main channel can be demultiplexed by channels 1, 2 and 3 at 0.7135 THz, 1.068 THz and 1.429 THz, respectively. By applying an external electric field to alter the tilt angle of the infiltrating LC material, the operating frequencies of channels 1, 2 and 3 can be relatively shifted up to 12.3%, 9.6% and 9.7%, respectively. The designed demultiplexer can not only provide a flexible means to demultiplex signals but also tune operating bands of output channels at the same time.


2021 ◽  
Vol 21 ◽  
pp. 103842
Author(s):  
Haoran Shi ◽  
Shubin Yan ◽  
Xiaoyu Yang ◽  
Hao Su ◽  
Xiushan Wu ◽  
...  

2009 ◽  
Vol 17 (2) ◽  
Author(s):  
S. Ertman ◽  
A. Czapla ◽  
T. Woliński ◽  
T. Nasiłowski ◽  
H. Thienpont ◽  
...  

AbstractPhotonic liquid crystal fibers have already been demonstrated as a promising perspective for creation of new classes of dynamically tunable optical fiber devices. By combining different geometries of photonic crystal fibers with a variety of different liquid crystals it is possible to obtain a new generation of fibers with dynamically tunable properties, e.g., transmission spectra, attenuation or dispersion.In this paper, tunable birefringence in a commercially available highly birefringent Blazephotonics PM-1550-01 photonic crystal fiber selectively filled with a low birefringence liquid crystal has been experimentally demonstrated. Theses experimental results have been compared with simulations based on the multipole method.


2020 ◽  
pp. 69-73
Author(s):  
N.A. Azarenkov ◽  
V.P. Olefir ◽  
A.E. Sporov

The article presents the results of theoretical study of phase and attenuation characteristics of the symmetric electromagnetic wave in long waveguide structure that partially filled by radially non-uniform plasma immersed in external steady magnetic field. The results of theoretical study of stationary gas discharge sustained by this wave in the considered waveguide structure with slightly varying radius of metal enclosure in the framework of electrodynamic model are presented as well. It was studied the influence of the effective plasma collision frequency on the phase and attenuation wave properties and on the plasma density axial distribution in gas discharge considered for different radial plasma density profiles.


2006 ◽  
Vol 129 (3) ◽  
pp. 372-378 ◽  
Author(s):  
Timothy B. Roth ◽  
Ann M. Anderson

Thermochromic liquid crystal materials change their crystalline structure and optical properties with temperature, making them useful in temperature measurement applications. This paper presents the results of a study to develop a temperature measurement system that uses light transmission through thermochromic liquid crystals instead of light reflection. We painted Hallcrest R25C10W sprayable liquid crystals on a clear surface and placed it in a spectrophotometer. The amount of light transmitted at monochromatic wavelengths from 400nm to 700nm was measured for temperatures from 25°C to 55°C under conditions of nonpolarized, linearly polarized, and cross-polarized light, for three light intensity levels, and three liquid crystal layer thicknesses. As the temperature was increased the amount of light transmitted through the liquid crystal layer increased. When the liquid crystals are in their active range the transmission spectra exhibit an s-curve shape and the percent of light transmitted through the liquid crystals at a fixed temperature increases with increasing wavelength. We detected significant changes in the transmission spectra for temperatures from 27°C to 48°C, whereas when used with reflected light the thermochromic liquid crystals are useful over a significantly smaller range. As the thickness of the thermochromic liquid crystal layer increases or as the incoming light intensity decreases, the amount of light transmitted through the liquid crystals decreases. We also investigated the effects of temperature overheat on the transmission spectra and found that heating the thermochromic liquid crystals above their active range increases the amount of light transmission. However, when the liquid crystals are cooled below their active range they return to their original state. We have analyzed the spectrophotometer data in a number of ways including: (a) total amount of light transmitted, (b) amount of red, green, and blue light transmitted; and (c) spectral curve shape characteristics (peak transmission, inflection wavelength and wavelength for peak transmission) all as a function of temperature. A linear relationship exists between temperature and all of these variables which we believe can be exploited for the development of a charge coupled light camera based light transmission system for temperature measurement.


Sign in / Sign up

Export Citation Format

Share Document