Cerium Oxide and Silicon Carbide Reinforced Al6063 Metal Matrix Composites Comparative Evaluation for Mechanical Properties and Fractography Studies

Author(s):  
Abdul Nazeer ◽  
Mir Safiulla
2016 ◽  
Vol 869 ◽  
pp. 447-451 ◽  
Author(s):  
Oscar Olimpio Araújo Filho ◽  
Alexandre Douglas Araújo de Moura ◽  
Everthon Rodrigues de Araújo ◽  
Maurílio José dos Santos ◽  
Cezar Henrique Gonzalez ◽  
...  

Powder Metallurgy (PM) Techniques consists in a suitable technique to process composites materials. A specific PM technique of mechanical alloying developed to produce new materials in the solid state is a consolidated route to obtain aluminum alloys metal matrix composites. Aluminum alloys metal matrix composites allies the good properties of aluminum and its alloys but with poor mechanical properties and the reinforcement of ceramics phases which add better mechanical properties to these alloys. The research of this materials processing by PM techniques presented new materials with improved properties. In this work an AA1100 aluminum alloy was reinforced by particulate silicon carbide and alumina types of ceramic phases. The powders were mixed and then processed by mechanical alloying in a SPEX vibratory type mill. Then the powders obtained were compacted and vacuum sintered. The sintered composites were characterized by means of Scanning Electron Microscopy (SEM) plus Energy Dispersive Spectroscopy (EDS) and Vickers hardness (HV) tests to evaluate the mechanical behavior.


Metal matrix composites (MMC) Are metals covered with diverse metals, stoneware or commonplace fragments. This essentially performed to beautify the homes of base metallic like high-quality, electricity, conductivity, and so on., Aluminum and its amalgams have pulled in most concept as a base steel in metallic lattice composites. Al MMC are typically applied in carrier, flying and severa area. This paper attempts to look the improvement of mechanical residences with the useful resource of the aggregate of Aluminum 6063 (Al6063) fortified with Silicon Carbide (SiC) and Mica composites made through combo tossing technique. The precedents are set up with aluminum changing with Silicon carbide via the use of weight percent of (12%, 13% and 14%) and mica (2%). Tests had been guided on these composites to evaluate how the flexibility, microhardness, flexural high-quality, compressive fine and microstructures of the materials were affected.


2014 ◽  
Vol 984-985 ◽  
pp. 326-330
Author(s):  
T.M. Chenthil Jegan ◽  
D. Ravindran ◽  
M. Dev Anand

Metal Matrix Composites possesses high mechanical properties compared to unreinforced materials. Aluminium Matrix Composites (AMC) is attracted in the emerging world because of its low cost, less weight and enhanced mechanical properties. In the present study the enhancement in mechanical properties like hardness and tensile strength of AMCs by reinforcing AA 6061 matrix with silicon carbide (SiC) and boron carbide (B4C) particles are analyzed. By enhanced stir casting method aluminium matrix was reinforced with boron carbide particulates and silicon carbide particulates with the various weight percentage of 2.5 %,5% and 7.5%.The tensile strength and hardness was found to increase with the increase in wt% of the reinforcement. From the analysis it is observed that the mechanical property of B4C reinforced AMC is significantly good compared to SiC reinforced AMC.


2019 ◽  
Vol 3 ◽  
pp. 89-97
Author(s):  
RAJESH KUMAR BEHERA ◽  
SARAT CHANDRA PANIGRAHI ◽  
BIRAJENDU PRASAD SAMAL ◽  
PRAMOD KUMAR PARIDA

Material world requires a strong research to produce a new class of materials having light weight, higher strength and better performances. This has been leads to investigate for high strength light weight alloy. The main objective in developing aluminium metal matrix composites is to provide enhanced characteristic performances and properties above the currently available materials.  Based upon the literature a new type of aluminium composite has been tries to develop which will offer attractive mechanical properties such as high strength, easy machinability, appreciable density, and low manufacturing cost etc. Aluminum powders of 99.55% purity and 325 mesh sizes are mixed with alloying metals like Copper, Magnesium, Silicon and Silicon Carbide powders in a precisely controlled quantity. During the process of powder metallurgy (P/M) product preparation, it was minutely observed to attain the maximum efficiency and accuracy. Aluminium (Al) is a light weight material but doesn’t possess a good strength. To achieve this, Copper (Cu), Silicon (Si), Magnesium (Mg) & Silicon Carbide (SiC) powders were blended with it at required proportions. The compaction was carried out with help of a C-45 steel die by power compaction press with a load of 150KN to 250KN. The obtained green products were sintered in a Muffle furnace to produce the final Aluminium Metal Matrix Composites (AMMCs) product.


2015 ◽  
Vol 766-767 ◽  
pp. 301-307 ◽  
Author(s):  
S. Dhanalakshmi ◽  
M. Jaivignesh ◽  
A. Suresh Babu ◽  
K. Shanmuga Sundaram

Metal matrix composites are the resultant of combination of two or more elements or compounds, possessing enhanced characteristics than the individual constituents present in them. This paper deals with the fabrication of Al 2014-SiC composite and investigation of its Microstructure and Mechanical properties. 2014 Aluminium alloy is characterized by good hardness. It is selected as the base metal. The Silicon Carbide is characterized by good strength and low density (3.21 g/cm3). It is chosen as the reinforcement. Silicon Carbide is coated with Nickel by electroless method to increase its wettability and binding properties. The fabrication of metal matrix composites is done by stir casting in a furnace, by introducing the required quantities of reinforcement into molten Aluminium alloy. The reinforcement and alloy is mixed by means of stirring, with the help of a stirrer. The base alloy and the composites are then tested for mechanical properties such as tensile strength, flexural strength, impact strength and hardness. The fabricated samples have higher tensile strength and impact strength than the alloy. Microstructure of the samples, are analyzed using optical microscope.


Sign in / Sign up

Export Citation Format

Share Document