Material Characterization Study on Aluminium Metal Matrix Composites by Enhanced Stir Casting Method

2014 ◽  
Vol 984-985 ◽  
pp. 326-330
Author(s):  
T.M. Chenthil Jegan ◽  
D. Ravindran ◽  
M. Dev Anand

Metal Matrix Composites possesses high mechanical properties compared to unreinforced materials. Aluminium Matrix Composites (AMC) is attracted in the emerging world because of its low cost, less weight and enhanced mechanical properties. In the present study the enhancement in mechanical properties like hardness and tensile strength of AMCs by reinforcing AA 6061 matrix with silicon carbide (SiC) and boron carbide (B4C) particles are analyzed. By enhanced stir casting method aluminium matrix was reinforced with boron carbide particulates and silicon carbide particulates with the various weight percentage of 2.5 %,5% and 7.5%.The tensile strength and hardness was found to increase with the increase in wt% of the reinforcement. From the analysis it is observed that the mechanical property of B4C reinforced AMC is significantly good compared to SiC reinforced AMC.

2015 ◽  
Vol 766-767 ◽  
pp. 301-307 ◽  
Author(s):  
S. Dhanalakshmi ◽  
M. Jaivignesh ◽  
A. Suresh Babu ◽  
K. Shanmuga Sundaram

Metal matrix composites are the resultant of combination of two or more elements or compounds, possessing enhanced characteristics than the individual constituents present in them. This paper deals with the fabrication of Al 2014-SiC composite and investigation of its Microstructure and Mechanical properties. 2014 Aluminium alloy is characterized by good hardness. It is selected as the base metal. The Silicon Carbide is characterized by good strength and low density (3.21 g/cm3). It is chosen as the reinforcement. Silicon Carbide is coated with Nickel by electroless method to increase its wettability and binding properties. The fabrication of metal matrix composites is done by stir casting in a furnace, by introducing the required quantities of reinforcement into molten Aluminium alloy. The reinforcement and alloy is mixed by means of stirring, with the help of a stirrer. The base alloy and the composites are then tested for mechanical properties such as tensile strength, flexural strength, impact strength and hardness. The fabricated samples have higher tensile strength and impact strength than the alloy. Microstructure of the samples, are analyzed using optical microscope.


2013 ◽  
Vol 592-593 ◽  
pp. 614-617 ◽  
Author(s):  
Konstantinos Anthymidis ◽  
Kostas David ◽  
Pavlos Agrianidis ◽  
Afroditi Trakali

It is well known that the addition of ceramic phases in an alloy e.g. aluminum, in form of fibers or particles influences its mechanical properties. This leads to a new generation of materials, which are called metal matrix composites (MMCs). They have found a lot of application during the last twenty-five years due to their low density, high strength and toughness, good fatigue and wear resistance. Aluminum matrix composites reinforced by ceramic particles are well known for their good thermophysical and mechanical properties. As a result, during the last years, there has been a considerable interest in using aluminum metal matrix composites in the automobile industry. Automobile industry use aluminum alloy matrix composites reinforced with SiC or Al2O3 particles for the production of pistons, brake rotors, calipers and liners. However, no reference could be cited in the international literature concerning aluminum reinforced with TiB particles and Fe and Cr, although these composites are very promising for improving the mechanical properties of this metal without significantly alter its corrosion behavior. Several processing techniques have been developed for the production of reinforced aluminum alloys. This paper is concerned with the study of TiB, Fe and Cr reinforced aluminum produced by the stir-casting method.


Author(s):  
Naseem Ahamad ◽  
Aas Mohammad ◽  
Kishor Kumar Sadasivuni ◽  
Pallav Gupta

The aim of the present study is to investigate the effect of alumina (Al2O3)–carbon (C) reinforcement on the properties of aluminium matrix. Aluminium matrix reinforced with Al2O3–carbon (2.5, 5, 7.5 and 10 wt.%) in equal proportion was prepared by stir casting. Phase, microstructure, EDS, density, hardness, impact strength and tensile strength of prepared samples have been investigated. X-ray diffraction reports the intermediate phase formation between the matrix and reinforcement phase due to interfacial bonding between them. Scanning electron microscopy shows that Al matrix has uniform distribution of reinforcement particles, i.e. Al2O3 and carbon. Density decreases due to variation of reinforcement because ceramic reinforcement has low density. Hardness decreases due to variation of carbon since it has soft nature. Impact strength was found to increase with addition of reinforcement. Hybrid composite of Al and 5% Al2O3 + 5% carbon reinforcement has maximum engineering and true ultimate tensile strength. It is expected that the present hybrid metal matrix composites will be useful for fabricating stock screws.


2015 ◽  
Vol 813-814 ◽  
pp. 230-234 ◽  
Author(s):  
T.S.A. Suryakumari ◽  
S. Ranganathan ◽  
P. Shankar

The present investigation involves studying the mechanical properties of the fabricated aluminium 7075 hybrid metal matrix composites reinforced with various weight % of SiC and Al2 O3 particulates by stir casting method. The Al 7075 hybrid metal matrix composites specimen were fabricated using L9 orthogonal array. The mechanical properties like Brinell Harness (BHN), Rockwell Hardness (HRC) and impact loads were experimented. The mechanical properties like hardness and impact loads have improved with the increase in weight percentage of SiC and Al2O3 particulates in the hybrid aluminium matrix.


2014 ◽  
Vol 592-594 ◽  
pp. 705-710 ◽  
Author(s):  
S. Dhanalakshmi ◽  
N Mohanasundararaju ◽  
P.G. Venkatakrishnan

A hybrid Al7075 metal matrix composites have been fabricated through liquid metallurgy route (Stir Casting method) using Al2O3 and B4C as reinforcement materials. The effect of weight percentage of reinforcement materials on mechanical properties of the composites have been studied by varying the weight percentage of Al2O3 as 3, 6, 9, 12 and 15% while keeping constant weight percentage of B4C (3%). The as-cast microstructure, tensile strength, micro and macro hardness of the fabricated hybrid composites have been studied. The mechanical properties of the prepared composites were increased with increasing the weight percentage of the reinforcement in the composite. The maximum tensile strength, micro-hardness and macro-hardness of 309 MPa, 140 VHN, and 112 BHN, respectively, were obtained for a hybrid Al7075 matrix composite containing 15% Al2O3 and 3% B4C.


Author(s):  
Rajesh Rajesh ◽  
Sathyashankara Sharma ◽  
M. C. Gowrishankar

Al 7075 is a good choice as a matrix material to prepare metal matrix composites (MMCs) owing to its better specific tensile strength and toughness. Among different types of the recently introduced composite materials, particles reinforced MMC and in particular aluminium as matrix material have been found to have enormous industrial applications like automotive and aerospace sectors. In the present study, mechanical properties of Al 7075-eutectoid steel powder metal matrix composites is assessed in age-hardened and as-cast conditions. The heat treatment processes are carried out in atmospheric condition. Eutectoid steel (water hardenable tool steel - W1grade) reinforced aluminium 7075 is an attempt to investigate the role of micro-constituent phases on property alterations of metal matrix composites. As an economical and promising route for MMC, liquid stir casting technique is used to reinforce synthesised steel powder in the matrix of Al 7075. Heat treatment is performed as a tool to mould and improve the required mechanical properties as per the requirements. Eutectoid steel powder is selected as the reinforcement material since it is believed to be composed of lamellar pearlite with ferrite and cementite as alternate layers in as-cast condition, serving as micro-hybrid reinforcement to improve hardness and strength. In this work four different proportions of steel powder (2, wt.% 4 wt.% and 6 wt.%) reinforced composites are prepared by a two-stage stir casting process. Age-hardening treatment is given to the samples and analysed critically and compared with alloy matrix for different properties such as tensile strength, hardness and toughness. Results have shown significant improvement in the ultimate tensile strength and hardness of the composites after aging treatment. The 4 wt.% steel powder reinforced composite has shown better results compared to other composites.


2018 ◽  
Vol 7 (3.34) ◽  
pp. 349
Author(s):  
Dr K. Arumugam ◽  
V Sathiyamoorthy ◽  
J Jerome Kingston ◽  
K Akiraman ◽  
Senthilkumar V ◽  
...  

Hybrid Metal matrix composites are commonly used in Aerospace, Automobile industries because of its light weight, High tensile strength, high resistance to wear and improved specific strength. This is mainly due to improved mechanical and tribological properties like strength, stiffness, abrasion, impact resistance and wears resistance. In the present scenario, a lot of research activities were on automobile. This paper direct the researchers and engineer towards suitable selection of materials by its properties in the relevant area and various  techniques involved in fabrication of metal matrix composites, predominantly on the liquid state metal processing method. In this work Al6061, Boron carbide, mica and hybrid Aluminium metal matrix composites are fabricated using Stir casting Techniques with varying mass fraction of mica 3%, 4%, 5% incorporated into the alloy, Sustaining the mass fraction of boron carbide as  10% for all proportions. Mica and B4C ceramic particles were incorporated into Al 6061 alloy by stir-casting method. In Stir casting method of composite materials synthesis, a dispersed phase (ceramic particles, short fibers) is mixed with a molten metal matrix by means of mechanical stirring. The samples were studied using scanning electron microscope (SEM) one of the most useful instrument for future research to know its microstructure. This study emphasize on the dry siding wear behaviour of aluminium reinforced with 3%,4%,5% mica and constant quantity of 10% boron carbide hybrid composite using a pin on disc. Wear performance of the hybrid composites were evaluated over a different load ranges and at different sliding velocities.  


Author(s):  
Farhan A Shamim ◽  
Akshay Dvivedi ◽  
Pradeep Kumar

In this work, metal matrix composites were fabricated using the electromagnetic stir casting process by adding 5 and 10 wt% silicon carbide in Al6063 alloy. Hardness, ultimate tensile strength, and yield strength of the developed Al6063/SiC/5p metal matrix composites have been improved by 17%, 18%, and 37%, respectively, in comparison with Al6063 alloy. Further, an improvement of 25%, 37%, and 71% in hardness, ultimate tensile strength, and yield strength, respectively, have been noted for Al6063/SiC/10p metal matrix composite in comparison with the Al6063 alloy. Results revealed that the hardness and strength of metal matrix composites were increased with silicon carbide addition in Al6063 alloy. The presence of different elements in metal matrix composites was identified by energy-dispersive X-ray spectroscopy and X-ray diffraction techniques. Energy-dispersive X-ray spectroscopy was used for elemental mapping observation of the metal matrix composites. Uniform distribution of reinforcement particles in the matrix with improved mechanical properties of metal matrix composites proved the adequacy of the electromagnetic stir casting process. The presence of facets and dimples in fractographs indicated the mixed mode of fracture. The average percentage porosity presented in Al6063/silicon carbide/5p and Al6063/SiC/10p metal matrix composites was found to be 4.68% and 5.22%, respectively.


2018 ◽  
Vol 7 (3.34) ◽  
pp. 369
Author(s):  
Nagendran N ◽  
Shanmuganathan V K ◽  
Gayathri N ◽  
Suresh K ◽  
Aravindh S ◽  
...  

Fine mechanical and thermal properties of metal matrix composites make them more demanding in various fields such as automotive, aerospace and structural applications. In this paper an effort has been made to fabricate a metal matrix composite, Titanium-di-oxide and silicon carbide reinforced in Al 6061 matrix using stir casting method. The reinforcements were added in 2%, 4% and 6% of weight to Al6061 to fabricate the metal matrix composite. Castings were machined and the specimens were prepared for various testing. Mechanical properties such as tensile strength, hardness, and corrosion analysis were studied for various compositions of reinforcements. And then the reinforcement was analyzed and studied for the improvement of mechanical properties in the material.  


Sign in / Sign up

Export Citation Format

Share Document