Voltage Control Method of Isolated Wind Power System

Author(s):  
Gyana Ranjan Biswal ◽  
Banaja Mohanty
2013 ◽  
Vol 448-453 ◽  
pp. 1727-1731
Author(s):  
Xi Yun Yang ◽  
Li Xia Li ◽  
Ya Min Zhang

The DC bus voltage is key variable for the operation of converter system in a wind power system. When grid voltage drops, a control of the DC bus voltage is needed to keep the smoothness of DC bus voltage for avoiding generator cutting off grid. A combined control method based on the grid voltage information feedforward with a crowbar circuit is proposed for a direct-drive wind power system in the paper. The unbalanced energy of the DC bus can be unleashed by the crowbar circuit during the dropping of grid voltage. At the same time, the output power of motor-side converter can be controlled to decrease according to the grid-side voltage information, and the mechanical speed of wind turbine and generator can be suppressed by the pitch angle regulation when the output power reduces. Thus, the DC-bus voltage can keep smooth. Results based on Matlab/Simulink simulation shows that this method not only improves dynamic response performance of DC bus voltages control, but also reduces the action time of crowbar circuit. It is benefit to the ability of the wind power system riding through the grid fault.


2021 ◽  
Vol 2087 (1) ◽  
pp. 012059
Author(s):  
Dongmei Xie ◽  
Changjian Li ◽  
Yanxi Jiang

Abstract Commissioned for wind power system there are two main types of generators, one is doubly fed induction generator(DFIG), the other is permanent magnetic synchronous generator(PMSG). Compared to DFIG unit, PMSG wind power system is more economical for manufacturing and maintenance. With the higher penetration rate of wind power generation in the grid, the need for the renewable power units to provide active frequency support yields relevant control characteristics in their power converters, for which the visual synchronous generator control exhibits promising features. This paper proposes a visual synchronous technology based PMSG wind power system. The simulation results verified the effectiveness of this proposed controller.


Energies ◽  
2020 ◽  
Vol 13 (19) ◽  
pp. 5022 ◽  
Author(s):  
Yusheng Sun ◽  
Yaqian Zhao ◽  
Zhifeng Dou ◽  
Yanyan Li ◽  
Leilei Guo

As much wind power is integrated into the power grid through power electronic equipment, the use of wind power is increased rapidly. Wind power system makes the power grid lack inertia and damping, thereby reducing power grid stability; in severe cases, it may even be disconnected. virtual synchronous generator (VSG) has been put forward to enhance the anti-disturbance performance of power grid. However, conventional VSG adopts an outer power loop and inner-current loop control. The inner-current loop control needs a pulse width modulation (PWM) module and proportion integration (PI) parameter settings. In order to reduce the parameter settings and simplify control structures, in this study, model predictive control (MPC) is used instead of inner-current loop control. At the same time—for the overall stability and control flexibility of the back-to-back system—we further propose to use outer-voltage loop control (OVLC) and MPC to stabilize direct current (DC) voltage on the machine-side and to employ model predictive virtual synchronous controls to provide inertia and damping for the power grid. The proposed control method was simulated in Matlab/Simulink (MathWorks, Massachusetts, MA, 2016) and verified by experimental results.


Sign in / Sign up

Export Citation Format

Share Document