Robust Control of Position and Speed for a DC Servomotor System Using Various Control Techniques

Author(s):  
Vineet Kumar ◽  
Veena Sharma ◽  
O. P. Rahi ◽  
Utsav Kumar
Author(s):  
Curt A. Laubscher ◽  
Jerzy T. Sawicki

Abstract Linear robust control techniques such as μ-synthesis can be used to design controllers for linear systems to guarantee specified performance criteria in the presence of modeling uncertainties, disturbances, and sensor noise. However, these techniques are rather uncommon in robotics due to the nonlinear nature of the plant where direct application would require large model uncertainties and therefore may only create a satisfactory controller if using lenient performance criteria. The inclusion of feedback linearization can rectify this by effectively converting the plant from a nonlinear system to a linear one, resulting in smaller model uncertainties. This paper proposes the use of feedback linearization to enable the use of linear robust control techniques on nonlinear systems. This approach is applied to a provisional version of a powered pediatric lower-limb orthosis. Sine sweep experiments are conducted to determine frequency response data for the system with and without feedback linearization. Models are identified to match the recorded data using optimization for both cases. Uncertainties are manually applied such that they encapsulate the observed measurements. The amount of uncertainties in the two models are quantified and a comparison shows that the uncertainties in the feedback-linearized system are smaller than in the system without feedback linearization.


Inventions ◽  
2019 ◽  
Vol 4 (3) ◽  
pp. 49
Author(s):  
Bin Wei

A tutorial on robust control, adaptive control, robust adaptive control and adaptive control of robotic manipulators is presented in a systematic manner. Some limitations of the above methods are also illustrated. The relationships between the robust control, adaptive control and robust adaptive control are demonstrated. Basic information on the joint space control, operational space control and force control is also given. This tutorial summarizes the most advanced control techniques currently in use in a very simple manner, and applies to robotic manipulators, which can provide an informative guideline for students who have little knowledge of controls or who want to understand the adaptive control of robotics in a systematic way.


Author(s):  
Tadeu F. de Sousa ◽  
Eduardo A. Tannuri

The control algorithm normally used in Dynamic Positioning (DP) Systems is based on linear control theory (proportional-derivative or linear quadratic MIMO controller), coupled to an Extended Kalman Filter (EKF) to estimate the environmental forces and wave filtering. Such controllers and estimators have problems of performance and stability related to large variations of loading (for tankers for example) or environmental conditions. The adjustment of controller gains and parameters of EKF is a complex process. Therefore, other techniques are being applied. An investigation into the area of control of mechanical systems was made, carrying out theoretical and experimental studies involving nonlinear robust control techniques applied to dynamic positioning of floating vessels. Two robust control techniques were applied and compared: first order sliding mode control (SMC) and higher order sliding mode control (HOSM). It is known that the main drawback of SMC is the presence of high-frequency oscillations called chattering. This undesirable effect can be eliminated by using HOSM. In order to ascertain the performance of the controller under the DP system, time-domain simulations were done. Furthermore, the technique of sliding mode requires higher order derivatives of the vessel’s position signal. Therefore was developed an exact real-time differentiator, a mathematical technique used to obtain the signal derived from the position signal in real time. To validate the simulated controller, experimental tests were performed considering a small-scale model of a DP tanker. The results confirmed the robustness of the HOSM controller, the good performance of the differentiator and the elimination of the chattering problem.


2021 ◽  
Vol 54 (4) ◽  
pp. 641-647
Author(s):  
Mukul Kumar Gupta ◽  
Roushan Kumar ◽  
Varnita Verma ◽  
Abhinav Sharma

In this paper the stability and tracking control for robot manipulator subjected to known parameters is proposed using robust control technique. The modelling of robot manipulator is obtained using Euler- Lagrange technique. Three link manipulators have been taken for the study of robust control techniques. Lyapunov based approach is used for stability analysis of triple link robot manipulator. The Ultimate upper bound parameter (UUBP) is estimated by the worst-case uncertainties subject to bounded conditions. The proposed robust control is also compared with computer torque control to show the superiority of the proposed control law.


Sign in / Sign up

Export Citation Format

Share Document