Sensitivity Study on the Classical Biofilm Model Using a Simplified Solution Method

Author(s):  
Baibaswata Das ◽  
Sushovan Sarkar
2019 ◽  
Vol 78 ◽  
pp. 135-143
Author(s):  
Yuliang Liang ◽  
Jun-Ping Geng ◽  
Han Zhou ◽  
Tingting Fan ◽  
Xuan Wang ◽  
...  

1992 ◽  
Vol 114 (2) ◽  
pp. 231-237 ◽  
Author(s):  
C. Bagci

Presently existing strength of materials solutions for stresses in curved beams use an incorrect normal force equilibrium condition to define neutral axis location, and to reach a simplified solution, which neglects the curvature effect on stresses due to normal force. This article presents a new but a most general form of the strength of materials solution for determining tangential normal stresses in curved beams, including reductions to special cases. The neutral axis phenomenon is clarified and experimentally verified. Several numerical examples are included, some of which offer photoelastic experimental results, where results predicted by the exact elasticity solution, method of the article, Winkler’s theory, and the conventional simplified method are compared. The hook, diametrically loaded cut, and full ring applications are included. It is shown that simplified theory leads to very large errors. Results by the method offered are very reliable with small errors which are comparable with those of exact elasticity solutions. Stress and deflection analyses of curved beams with varying thicknesses of cross-sections by exact elasticity solutions are given in a separate article [6].


Author(s):  
Abbas A. Moftakhar ◽  
Grzegorz Glinka

A simplified solution method that enables the estimation of stresses and strains in high temperature components under creep conditions is presented. The solution is derived based on strain energy density considerations and is applicable to both uniaxial and multiaxial stress states. In particular, this simplified method is developed for an efficient estimation of the cyclic stress-strain history at critical locations which needed for fatigue analysis of hot sections under creep conditions where conventional finite element creep analysis becomes extremely time consuming. The input data necessary to perform this simplified solution are the stresses and strains obtained from a linear elastic analyses. If the finite element method (FEM) is used for the linear elastic analysis of components, then the simplified solution method can be programmed as a post processor file. The file uses the linear elastic FEM results and generates an approximate time-dependent analysis. Presented results illustrates the accuracy of the method by comparing with finite element creep analysis results for several hot sections under creep conditions. Also, it is shown that the computational time needed to perform this solution is far less than the conventional finite element creep analysis.


1964 ◽  
Vol 7 (4) ◽  
pp. 389-393 ◽  
Author(s):  
David C. Shepherd ◽  
Robert Goldstein ◽  
Benjamin Rosenblüt

Two separate studies investigated race and sex differences in normal auditory sensitivity. Study I measured thresholds at 500, 1000, and 2000 cps of 23 white men, 26 white women, 21 negro men, and 24 negro women using the method of limits. In Study II thresholds of 10 white men, 10 white women, 10 negro men, and 10 negro women were measured at 1000 cps using four different stimulus conditions and the method of adjustment by means of Bekesy audiometry. Results indicated that the white men and women in Study I heard significantly better than their negro counterparts at 1000 and 2000 cps. There were no significant differences between the average thresholds measured at 1000 cps of the white and negro men in Study II. White women produced better auditory thresholds with three stimulus conditions and significantly more sensitive thresholds with the slow pulsed stimulus than did the negro women in Study II.


2017 ◽  
Vol 04 (03) ◽  
pp. 231-236 ◽  
Author(s):  
Barham S. Mahmood ◽  
Jagar Ali ◽  
Shirzad B. Nazhat ◽  
David Devlin

1996 ◽  
Vol 18 (4) ◽  
pp. 14-22
Author(s):  
Vu Khac Bay

Investigation of the elastic state of curve beam system had been considered in [3]. In this paper the elastic-plastic state of curve beam system in the form of cylindrical shell is analyzed by the elastic solution method. Numerical results of the problem and conclusion are given.


Sign in / Sign up

Export Citation Format

Share Document