Melatonin and Seasonal Reproduction in Teleosts

Author(s):  
Mehak Hafeez ◽  
Irfan Ahmad
2012 ◽  
Vol 34 (3) ◽  
pp. 281-288 ◽  
Author(s):  
Ping LAI ◽  
Ping-Qing WANG ◽  
Bao-Yun ZHANG ◽  
Ming-Xing CHU ◽  
Chong-Xu LIU ◽  
...  

Reproduction ◽  
2008 ◽  
Vol 136 (1) ◽  
pp. 1-8 ◽  
Author(s):  
Nobuhiro Nakao ◽  
Hiroko Ono ◽  
Takashi Yoshimura

Many animals that breed seasonally measure the day length (photoperiod) and use these measurements as predictive information to prepare themselves for annual breeding. For several decades, thyroid hormones have been known to be involved in this biological process; however, their precise roles remain unknown. Recent molecular analyses have revealed that local thyroid hormone activation in the hypothalamus plays a critical role in the regulation of the neuroendocrine axis involved in seasonal reproduction in both birds and mammals. Furthermore, functional genomics analyses have revealed a novel function of the hormone thyrotropin. This hormone plays a key role in signaling day-length changes to the brain and thus triggers seasonal breeding. This review aims to summarize the currently available knowledge on the interactions between elements of the thyroid hormone axis and the neuroendocrine system involved in seasonal reproduction.


2018 ◽  
Vol 5 (5) ◽  
pp. 180041 ◽  
Author(s):  
Muriel Dietrich ◽  
Teresa Kearney ◽  
Ernest C. J. Seamark ◽  
Janusz T. Paweska ◽  
Wanda Markotter

Seasonal reproduction is a period of extreme physiological and behavioural changes, yet we know little about how it may affect host microbial communities (i.e. microbiota) and pathogen transmission. Here, we investigated shifts of the bacterial microbiota in saliva, urine and faeces during the seasonal reproduction of bats in South Africa, and test for an interaction in shedding patterns of both bacterial ( Leptospira ) and viral (adeno- and herpesviruses) agents. Based on a comparative approach in two cave-dwelling bat species and high-throughput sequencing of the 16S rRNA gene, we demonstrated a clear signature in microbiota changes over the reproduction season, consistent across the multiple body habitats investigated, and associated with the sex, age and reproductive condition of bats. We observed in parallel highly dynamic shedding patterns for both bacteria and viruses, but did not find a significant association between viral shedding and bacterial microbiota composition. Indeed, only Leptospira shedding was associated with alterations in both the diversity and composition of the urinary microbiota. These results illustrate how seasonal reproduction in bats substantially affects microbiota composition and infection dynamics, and have broad implications for the understanding of disease ecology in important reservoir hosts, such as bats.


Sign in / Sign up

Export Citation Format

Share Document