Electrochemical Impedance Spectroscopy as a Powerful Assessment Tool for the Electropolishing Quality of AISI 304 Stainless Steel

Author(s):  
Simon Detriche ◽  
Jean-François Vanhumbeeck ◽  
Joseph Delhalle ◽  
Zineb Mekhalif
2011 ◽  
Vol 2011 ◽  
pp. 1-8 ◽  
Author(s):  
A. Fattah-alhosseini ◽  
S. Taheri Shoja ◽  
B. Heydari Zebardast ◽  
P. Mohamadian Samim

The passivity and protective nature of the passive films are essentially related to ionic and electronic transport processes, which are controlled by the optical and electronic properties of passive films. In this study, the electrochemical behavior of passive films anodically formed on AISI 304 stainless steel in sulfuric acid solution has been examined using electrochemical impedance spectroscopy. AISI 304 in sulphuric acid solution is characterized by high interfacial impedance, thereby illustrating its high corrosion resistance. Results showed that the interfacial impedance and the polarization resistance () initially increase with applied potential, within the low potential passive. However, at a sufficiently high potential passive ( V), the interfacial impedance and the polarization resistance decrease with increasing potential. An electrical equivalent circuit based on the impedance analysis, which describes the behavior of the passive film on stainless steel more satisfactorily than the proposed models, is presented.


CORROSION ◽  
10.5006/2680 ◽  
2018 ◽  
Vol 74 (6) ◽  
pp. 705-714 ◽  
Author(s):  
Yingying Yue ◽  
Chengjun Liu ◽  
Edouard Asselin ◽  
Peiyang Shi ◽  
Maofa Jiang

H2SO4-H2O2 mixtures are a promising and environmentally friendly passivation medium for the stainless-steel pickling process. The corrosion behavior of stainless steel is highly dependent on the kinetics of passive film growth. Long-term electrochemical measurements, including polarization resistance, open circuit potential (OCP), and electrochemical impedance spectroscopy (EIS) measurements were performed to investigate the evolution of the passive state of 304 stainless steel. According to the OCP results, an active-passive transition takes place in 10 ks in 0.5 M H2SO4 solution containing 0.005 M to 0.3 M H2O2. Polarization resistance results indicate that the passive film thickness keeps growing after OCP stabilization in the presence of H2O2. Electrochemical impedance spectroscopy (EIS) results confirmed that the growth of the passive film in H2SO4-H2O2 solutions takes about 9 h. Additionally, according to the Point Defect Model (PDM) and Mott–Schottky analysis, the semiconductor properties of the passive film on 304 stainless steel in H2SO4-H2O2 solution were studied. The results indicate that the passive film is an n-type semiconductor. The donor density is in the range of 1.6 × 10−21 cm−3 to 24 and decreases exponentially with increasing film formation potential (this potential coincides with the final OCP in the corresponding H2SO4-H2O2 solutions). By postulating that most donors are oxygen vacancies, the point defect properties including diffusivity and electrical field strength are obtained.


Author(s):  
A.P. Loperena ◽  
I.L. Lehr ◽  
S.B. Saidman

Duplex coating consisting of an inner cerium-based layer and polypyrrole (PPy) film topcoat was electrodeposited onto AISI 304 stainless steel. The cerium-based coating was electrodeposited in solutions containing cerium nitrate at 50 ºC. The polymeric outer layer was electropolymerized in the presence of sodium bis(2-ethylhexyl) sulfosuccinate (AOT). The electrosynthesis was done under potentiostat conditions. The coatings were characterized by scanning electron microscopy (SEM) and energy dispersive x-ray spectrometry (EDX). The morphology of the double-layered cerium polypyrrole film shows a granular structure with the presence of agglomerates of small grains. The anticorrosive performance of the coatings was evaluated in sodium chloride solution by linear polarization, open circuit measurements, and electrochemical impedance spectroscopy (EIS). Single films, cerium layer and PPy coating, and the duplex film all reduce the corrosion rate of AISI 304 stainless steel in NaCl solution. The duplex coating presents an improved corrosion resistance concerning the single films. The combination of the characteristics of the single layers is responsible for the superior corrosion protection efficiency of the double-layered cerium polypyrrole coating.


2014 ◽  
Vol 6 (10) ◽  
pp. 2179-2184 ◽  
Author(s):  
Teguh Dwi Widodo ◽  
Azizul Helmi Bin Sofian ◽  
Ryouji Suzuki ◽  
Youhei Hirohata ◽  
Kazuhiko Noda

2011 ◽  
Vol 189-193 ◽  
pp. 3570-3574
Author(s):  
Jian Tao Dong ◽  
Zhen Luo ◽  
Da Hai Xia ◽  
Rui Wang

The corrosion behaviors of 304 stainless steel (304SS) which has been cut and 304SS which has not been cut in two different solutions were investigated using polarization curve and electrochemical impedance spectroscopy (EIS) methods. The results show that 304SS which has been cut and 304SS which has not been cut have the similar corrosion voltage in two different solutions. However, the corrosion velocity of 304SS which has been cut is more than 304SS which has not been cut both in the two solutions and the corrosion behaviors of two 304SS in the water solution are better than in the water which has little oil.


Author(s):  
J. A. Korbonski ◽  
L. E. Murr

Comparison of recovery rates in materials deformed by a unidimensional and two dimensional strains at strain rates in excess of 104 sec.−1 was performed on AISI 304 Stainless Steel. A number of unidirectionally strained foil samples were deformed by shock waves at graduated pressure levels as described by Murr and Grace. The two dimensionally strained foil samples were obtained from radially expanded cylinders by a constant shock pressure pulse and graduated strain as described by Foitz, et al.


Sign in / Sign up

Export Citation Format

Share Document