Journal of Material Science and Technology Research
Latest Publications


TOTAL DOCUMENTS

52
(FIVE YEARS 29)

H-INDEX

1
(FIVE YEARS 0)

Published By Avanti Publishers

2410-4701

Author(s):  
N.I. Grechanyuk ◽  
V.G. Grechanyuk ◽  
A.F. Manulyk

In this article, the present-day problems of microporous condensed materials obtained from the vapor phase are discussed. The pore sizes are regulated by the amount of the second phase concentration and the deposition temperature. The oxides, fluorides, and sulfides can be used as the second phase and non-removable inclusions. The open porosity can be regulated from 0% to 50 %of the porosity and with average porose sizes of 0.1 to 8 µm. The condensed micro-porous materials can be deposited in coating form or the form of massive bulk sheet materials with a thickness of up to 6 mm and a diameter of 1m.


Author(s):  
N.I. Grechanyuk ◽  
V.G. Grechanyuk ◽  
A.F. Manulyk

The data of condensed from vapor phase disperse reinforced materials design is presented. It is shown that the material's mechanical properties depend on matrix type, types of dispersed particles, temperature and roughness of the substrate, purity of initial materials, and its evaporation speed.


Author(s):  
Di Wang ◽  
Jinshan Lu ◽  
Junxiong Zhan ◽  
Zhiyong Liu ◽  
Bin Xie

Quarrying and processing of granite produce large amounts of waste residues. Besides being a loss of resources, improper disposal of these wastes results in pollution of the soil, water and air around the dumpsites. The main components of granite waste are quartz, feldspars and a small amount of biotite. Due to its hard and dense texture, high strength, corrosion resistance and wear resistance, granite waste may be recycled into building materials, composite materials and fine ceramics, effectively improving their mechanical properties and durability. By using the flotation process, high value-added products such as potash feldspar and albite may be retrieved from granite waste. Also, granite waste has the potential for application in soil remediation and sewage treatment. This review presents recent advances in granite waste reutilization, and points out the problems associated with its use, and the related countermeasures, indicating the scale of high value-added reutilization of granite waste.


Author(s):  
Guo Yan ◽  
Shi Xiaobing ◽  
Pang Weiqiang ◽  
Qin Zhao ◽  
Xu Huixiang ◽  
...  

To improve the safety of cyclotetramethylenetetranitramine (HMX) particles, the polymer thermoplastic polyurethane elastomer (TPU) and nitrocellulose (NC) were introduced to coat HMX powder by water-solution suspension method and internal solution method, respectively. Scanning electron microscope (SEM) and X-ray photo-electron spectrometry (XPS) were employed to characterize the HMX samples and the role of NC and TPU in the coating processes were discussed. The impact sensitivity, friction sensitivity, and the thermal decomposition of coated HMX particles were investigated, and compared to the unprocessed ones. The results indicate that both TPU and NC can improve the wetting ability of the coating materials on HMX surface and reinforce the connection between HMX and the coating materials. The impact sensitivity and friction sensitivity of HMX samples decrease obviously after they have been surface coated; the drop height (H50) is increased from 35.24 cm to 50.08 cm, and the friction probability is reduced from 93.2 % to 58.3%. The activation energy (Ea) and the self-ignition temperature increase by 10.46 KJ·mol-1 and 1.8, respectively.


Author(s):  
Levan Chkhartishvili

Materials atomic structure, ground-state and physical properties as well as their chemical reactivity mainly are determined by electronic structure. When first-principles methods of studying the electronic structure acquire good predictive power, the best approach would be to design new functional materials theoretically and then check experimentally only most perspective ones. In the paper, the semi-classical model of multi-electron atom is constructed, which makes it possible to calculate analytically (in special functions) the electronic structure of atomic particles themselves and materials as their associated systems. Expected relative accuracy makes a few percent, what is quite acceptable for materials science purposes.


Author(s):  
Joaquín Grassi ◽  
Mario A. Macías ◽  
Juan F. Basbus ◽  
Jorge Castiglioni ◽  
Gilles H. Gauthier ◽  
...  

YBa2Cu3O6+δ (YBC) oxygen deficient perovskite was synthesized by an auto-combustion method and was studied as potential cathode for Intermediate Temperature Solid Oxide Fuel Cell (IT-SOFC). Synchrotron X-ray thermodiffraction in air shows a phase transition from orthorhombic Pmmm to tetragonal P4/mmm space groups at ~ 425 °C. The chemical compatibility with Ce0.9Gd0.1O1.95 (GDC) electrolyte was investigated in air where certain reactivity was observed above 800 °C. However, the main phase is Ba(Ce1-xYx)O3, a good ionic conductor. The catalytic performance in air was obtained by electrochemical impedance spectroscopy (EIS) measurements on YBC/GDC/YBC symmetrical cells. The area specific resistance (ASR) values change from 13.66 to 0.14 Ω cm2 between 500 and 800 °C, with activation energy (Ea) of 0.41 eV. The results suggest potential applications of YBC as IT-SOFC cathode.


Author(s):  
Anil Dhawan ◽  
S Faheem Naqvi

Global resources are limited and mindless use of them will finally lead to a scarcity. The need of the hour is to find the alternative energy resources which are abundant in nature and which deviate us from using fossils fuels. Solar Energy has gained a significant popularity in the past few decades as it is clean, meaning it does not release greenhouse gases and other harmful pollutants. It is also an abundant source of energy as it is available till the existence of the planet. Unlike fossil fuels, which are finite and cannot be replenished for thousands of years. Another drawback of fossil fuels is that they emit greenhouse gases and contribute to global climate change. Solar energy is an important technology for many reasons and has become a popular topic as many scientists around the world are working to increase the photo-electron conversion efficiency with minimum production cost. Diversified approaches have been undertaken to enhance the efficiency of solar cell. This paper will review the current state of art on photovoltaic cells (PVCs) in context to the materials used for fabrication, their possible cost and their working efficiency. This paper will also undertake the challenges that came across during the whole process and their possible solutions.


Author(s):  
A.P. Loperena ◽  
I.L. Lehr ◽  
S.B. Saidman

Duplex coating consisting of an inner cerium-based layer and polypyrrole (PPy) film topcoat was electrodeposited onto AISI 304 stainless steel. The cerium-based coating was electrodeposited in solutions containing cerium nitrate at 50 ºC. The polymeric outer layer was electropolymerized in the presence of sodium bis(2-ethylhexyl) sulfosuccinate (AOT). The electrosynthesis was done under potentiostat conditions. The coatings were characterized by scanning electron microscopy (SEM) and energy dispersive x-ray spectrometry (EDX). The morphology of the double-layered cerium polypyrrole film shows a granular structure with the presence of agglomerates of small grains. The anticorrosive performance of the coatings was evaluated in sodium chloride solution by linear polarization, open circuit measurements, and electrochemical impedance spectroscopy (EIS). Single films, cerium layer and PPy coating, and the duplex film all reduce the corrosion rate of AISI 304 stainless steel in NaCl solution. The duplex coating presents an improved corrosion resistance concerning the single films. The combination of the characteristics of the single layers is responsible for the superior corrosion protection efficiency of the double-layered cerium polypyrrole coating.


Author(s):  
Ankitha Menon ◽  
Abdullah Khan ◽  
Neethu T.M. Balakrishnan ◽  
Prasanth Raghavan ◽  
Carlos A. Leon y Leon ◽  
...  

In the current scenario, energy generation is relied on the portable gadgets with more efficiency paving a way for new versatile and smart techniques for device fabrication. 3D printing is one of the most adaptable fabrication techniques based on designed architecture. The fabrication of 3D printed energy storage devices minimizes the manual labor enhancing the perfection of fabrication and reducing the risk of hazards. The perfection in fabrication technique enhances the performance of the device. The idea has been built upon by industry as well as academic research to print a variety of battery components such as cathode, anode, separator, etc. The main attraction of 3D printing is its cost-efficiency. There are tremendous savings in not having to manufacture battery cells separately and then assemble them into modules. This review highlights recent and important advances made in 3D printing of energy storage devices. The present review explains the common 3D printing techniques that have been used for the printing of electrode materials, separators, battery casings, etc. Also highlights the challenges present in the technique during the energy storage device fabrication in order to overcome the same to develop the process of 3D printing of the batteries to have comparable performance to, or even better performance than, conventional batteries.


2021 ◽  
Vol 8 (1) ◽  
pp. 12-18
Author(s):  
C. Camerini ◽  
◽  
J.V. Rocha ◽  
R.W.F. Santos ◽  
V.M. Silva ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document