Monitoring behaviour of 304 stainless steel under constant tensile loading by electrochemical impedance spectroscopy

2012 ◽  
Vol 47 (7) ◽  
pp. 478-483 ◽  
Author(s):  
J. Kovač ◽  
T. Kosec ◽  
A. Legat
CORROSION ◽  
10.5006/2680 ◽  
2018 ◽  
Vol 74 (6) ◽  
pp. 705-714 ◽  
Author(s):  
Yingying Yue ◽  
Chengjun Liu ◽  
Edouard Asselin ◽  
Peiyang Shi ◽  
Maofa Jiang

H2SO4-H2O2 mixtures are a promising and environmentally friendly passivation medium for the stainless-steel pickling process. The corrosion behavior of stainless steel is highly dependent on the kinetics of passive film growth. Long-term electrochemical measurements, including polarization resistance, open circuit potential (OCP), and electrochemical impedance spectroscopy (EIS) measurements were performed to investigate the evolution of the passive state of 304 stainless steel. According to the OCP results, an active-passive transition takes place in 10 ks in 0.5 M H2SO4 solution containing 0.005 M to 0.3 M H2O2. Polarization resistance results indicate that the passive film thickness keeps growing after OCP stabilization in the presence of H2O2. Electrochemical impedance spectroscopy (EIS) results confirmed that the growth of the passive film in H2SO4-H2O2 solutions takes about 9 h. Additionally, according to the Point Defect Model (PDM) and Mott–Schottky analysis, the semiconductor properties of the passive film on 304 stainless steel in H2SO4-H2O2 solution were studied. The results indicate that the passive film is an n-type semiconductor. The donor density is in the range of 1.6 × 10−21 cm−3 to 24 and decreases exponentially with increasing film formation potential (this potential coincides with the final OCP in the corresponding H2SO4-H2O2 solutions). By postulating that most donors are oxygen vacancies, the point defect properties including diffusivity and electrical field strength are obtained.


2014 ◽  
Vol 6 (10) ◽  
pp. 2179-2184 ◽  
Author(s):  
Teguh Dwi Widodo ◽  
Azizul Helmi Bin Sofian ◽  
Ryouji Suzuki ◽  
Youhei Hirohata ◽  
Kazuhiko Noda

2011 ◽  
Vol 189-193 ◽  
pp. 3570-3574
Author(s):  
Jian Tao Dong ◽  
Zhen Luo ◽  
Da Hai Xia ◽  
Rui Wang

The corrosion behaviors of 304 stainless steel (304SS) which has been cut and 304SS which has not been cut in two different solutions were investigated using polarization curve and electrochemical impedance spectroscopy (EIS) methods. The results show that 304SS which has been cut and 304SS which has not been cut have the similar corrosion voltage in two different solutions. However, the corrosion velocity of 304SS which has been cut is more than 304SS which has not been cut both in the two solutions and the corrosion behaviors of two 304SS in the water solution are better than in the water which has little oil.


2017 ◽  
Vol 24 (6) ◽  
pp. 825-832 ◽  
Author(s):  
Murat Ates

AbstractMethylcarbazole (MCz) and its nanocomposites with Montmorillonite nanoclay and Zn nanoparticles were chemically synthesized on a stainless steel (SS304) electrode. The modified electrode was characterized by optical microscope, scanning electron microscopy-energy dispersive X-ray analysis (SEM-EDX), Fourier-transform infrared spectroscopy-attenuated transmission reflectance (FTIR-ATR), four-point probe, and electrochemical impedance spectroscopy (EIS) analysis. The synthesized stainless steel/poly(methylcarbazole) (SS/P(MCz)), stainless steel/poly(methylcarbazole)/nanoclay (SS/P(MCz)/nanoclay), and stainless steel/poly(methylcarbazole)/nanoZn (SS/P(MCz)/nanoZn) were studied by potentiodynamic polarization curves. The protective behavior of these coatings in 3.5% NaCl as the corrosion medium was investigated using Tafel polarization curves, as well as electrochemical impedance spectroscopy. The corrosion protection parameters were also supported by EIS and an equivalent circuit model of Rs(Qc(Rc(QpRct))). The corrosion current of the SS/P(MCz)/nanoclay samples was found to be much lower (icorr=0.010 μA×cm-2) than that of SS/P(MCz)/nanoZn (icorr=0.031 μA×cm-2) and pure SS/P(MCz) samples. These results reveal that chemically synthesized SS/P(MCz), SS/P(MCz)/nanoclay, and SS/P(MCz)/nanoZn nanocomposite film coating have high corrosion protection efficiency (PE=99.56%, 99.89%, and 99.67%, respectively). Thus, based on the study findings, we posit that nanoclay and Zn nanoparticles possess favorable barrier properties, which can be employed in order to achieve improvements in chemical corrosion protection through P(MCz) coating.


Coatings ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 598
Author(s):  
Wenwei Li ◽  
Jun-e Qu ◽  
Zhiyong Cao ◽  
Hairen Wang

The colored films were successfully prepared on the 304 stainless steel surfaces in coloring solutions with different NiSO4 contents. The purpose of this study was to investigate the effects of NiSO4 in the coloring solution on the coloring performance of 304 stainless steel and corrosion resistance of the obtained colored film in NaCl solution. The coloring rate was determined from coloring potential-time curve, and the protection properties of the color films in a 3.5% NaCl solution were characterized by potentiodynamic polarization scan, electrochemical impedance spectroscopy, and wear resistance test. The results showed that adding NiSO4 could accelerate the coloring process but brought about a negative impact on the surface’s corrosion resistance.


2020 ◽  
Vol 1 (1) ◽  
pp. 77-91 ◽  
Author(s):  
Ingmar Bösing ◽  
Georg Marquardt ◽  
Jorg Thöming

Martensitic stainless steels are widely used materials. Their mechanical and corrosion properties are strongly influenced by their microstructure and thereby can be affected by heat treatment. In the present study, the effect of different austenitizing temperatures on the passive film growth kinetics of martensitic stainless steel is studied by electrochemical impedance spectroscopy. The data was further fitted by the point defect model to determine kinetic parameters. We show that an increasing austenitizing temperature leads to a more protective passive film and slows down passive film dissolution in sulfuric acid.


Sign in / Sign up

Export Citation Format

Share Document