Short SiC Fiber and Hybrid SiC/Carbon Fiber Reinforced Geopolymer Matrix Composites

Author(s):  
Dechang Jia ◽  
Peigang He ◽  
Meirong Wang ◽  
Shu Yan
2009 ◽  
Vol 23 (06n07) ◽  
pp. 1371-1376 ◽  
Author(s):  
TIESONG LIN ◽  
DECHANG JIA

Electroless Ni -plated short carbon fiber reinforced geopolymer matrix composites with various carbon fiber/matrix interface coating thicknesses have been successfully fabricated. The influences of coating thickness on the mechanical properties and fracture behavior have been investigated by three-point bending test and scanning electron microscopy. The flexural strength and Young's modulus of Ni -plated short carbon fiber reinforced geopolymer composites exhibit maximums as the average fiber coating thickness increases, but the work of fracture has a sharp decrease, and the fracture manner changes from ductile to brittle. This is mainly attributed to the fact that the carbon fibers favor breakage rather than pulling-out during loading because of the higher interface bonding strength of fiber/matrix, and pliability of the carbon fibers decreases with the increase of the coating thickness.


2020 ◽  
Vol 40 (5) ◽  
pp. 415-420 ◽  
Author(s):  
Yasin Altin ◽  
Hazal Yilmaz ◽  
Omer Faruk Unsal ◽  
Ayse Celik Bedeloglu

AbstractThe interfacial interaction between the fiber and matrix is the most important factor which influences the performance of the carbon fiber-epoxy composites. In this study, the graphitic surface of the carbon fibers was modified with graphene oxide nanomaterials by using a spray coating technique which is an easy, cheap, and quick method. The carbon fiber-reinforced epoxy matrix composites were prepared by hand layup technique using neat carbon fibers and 0.5, 1 and 2% by weight graphene oxide (GO) modified carbon fibers. As a result of SEM analysis, it was observed that GO particles were homogeneously coated on the surface of the carbon fibers. Furthermore, Young's modulus increased from 35.14 to 43.40 GPa, tensile strength increased from 436 to 672 MPa, and the elongation at break was maintained around 2% even in only 2% GO addition.


Author(s):  
Andi Udayakumar ◽  
M. Rizvan Basha ◽  
Sarabjit Singh ◽  
Sweety Kumari ◽  
V. V. Bhanu Prasad

2011 ◽  
Vol 686 ◽  
pp. 758-764 ◽  
Author(s):  
Xiao Ming Sui ◽  
Xi Liang Xu ◽  
Xiao Meng Zheng ◽  
Guang Zhi Xu ◽  
Qiang Wang

Driven by the increasing requirements from aircraft producers, aluminium alloy matrix composites with carbon fiber reinforcement have been largely used in the modern industry. The method of traditional preparation of carbon fiber reinforced aluminum matrix composites is not only high cost and complex to produce but also difficult to apply in the civilian. The present paper focuses on exploratory study on the preparation of carbon-fiber- reinforced aluminum composites, the intensifying material is continuous long carbon fiber. In order to avoid any interfacial reactions in the carbon fiber reinforced composites, the carbon fibers were coated with copper. We made The tensile samples were made by using the mould, the tensile properties determined, the strengthening mechanism studied, and the carbon fiber in the matrix observed with the microscope.


Sign in / Sign up

Export Citation Format

Share Document