High-Speed Shadowgraph Visualization Studies of the Effectiveness of Ventilating a V-Gutter Flame Holder to Mitigate Screech Combustion Instability in an Aero-Gas Turbine Afterburner

Author(s):  
C. Rajashekar ◽  
Shambhoo ◽  
H. S. Raghukumar ◽  
R. M. Udaya Kumar ◽  
K. Ashirvadam ◽  
...  
Author(s):  
Sanghyeok Kwak ◽  
Seongpil Joo ◽  
Seongheon Kim ◽  
Jaehong Choi ◽  
Youngbin Yoon

Abstract In this study, the combustion instability characteristics are experimentally investigated in a partially premixed gas turbine model combustor. The combustor is operated with methane and preheated air as the fuel and oxidizer, respectively, at atmospheric pressure. The experiment is carried out at various equivalence ratios and flow rates of fuel and air to investigate the effect on the combustion instability frequency transition. According to the experimental results, the transition of the combustion instability frequency to higher longitudinal mode occurs because of the flow rate variation. To explain the frequency shift phenomenon, the concept of convection time is introduced, which is mostly affected by the flame position and exit velocity of the fuel-air mixture. The flame positions are measured using OH planar laser-induced fluorescence (OH-PLIF), and the flow field information is obtained using particle image velocimetry to calculate the convection time. The measurement results show that the injection velocities of fuel and air are also important factors in determining the combustion instability frequency as well as the equivalence ratio, which is a crucial parameter of the flame position. As a result, it is found that the decrease in convection time owing to a closer distance from the dump plane to the flame and a faster exit velocity of the fuel-air mixture causes the combustion instability frequency mode shift. Additionally, the structural characteristics of the flame are analyzed using high-speed OH-PLIF measurement. The differences in the flame structure between the stable and unstable flames in the 2nd and 3rd longitudinal modes are analyzed. The change in the unburned mixture is mainly observed and the relationship between the dynamic pressure, heat release rate, and length of the unburned region is also analyzed.


Electronics ◽  
2020 ◽  
Vol 9 (5) ◽  
pp. 848 ◽  
Author(s):  
Ouk Choi ◽  
Jongwun Choi ◽  
Namkeun Kim ◽  
Min Chul Lee

In this study, novel deep learning models based on high-speed flame images are proposed to diagnose the combustion instability of a gas turbine. Two different network layers that can be combined with any existing backbone network are established—(1) An early-fusion layer that can learn to extract the power spectral density of subsequent image frames, which is time-invariant under certain conditions. (2) A late-fusion layer which combines the outputs of a backbone network at different time steps to predict the current combustion state. The performance of the proposed models is validated by the dataset of high speed flame images, which have been obtained in a gas turbine combustor during the transient process from stable condition to unstable condition and vice versa. Excellent performance is achieved for all test cases with high accuracy of 95.1–98.6% and a short processing time of 5.2–12.2 ms. Interestingly, simply increasing the number of input images is as competitive as combining the proposed early-fusion layer to a backbone network. In addition, using handcrafted weights for the late-fusion layer is shown to be more effective than using learned weights. From the results, the best combination is selected as the ResNet-18 model combined with our proposed fusion layers over 16 time-steps. The proposed deep learning method is proven as a potential tool for combustion instability identification and expected to be a promising tool for combustion instability prediction as well.


Author(s):  
Patrick Nau ◽  
Zhiyao Yin ◽  
Oliver Lammel ◽  
Wolfgang Meier

Phosphor thermometry has been developed for wall temperature measurements in gas turbines and gas turbine model combustors. An array of phosphors has been examined in detail for spatially and temporally resolved surface temperature measurements. Two examples are provided, one at high pressure (8 bar) and high temperature and one at atmospheric pressure with high time resolution. To study the feasibility of this technique for full-scale gas turbine applications, a high momentum confined jet combustor at 8 bar was used. Successful measurements up to 1700 K on a ceramic surface are shown with good accuracy. In the same combustor, temperatures on the combustor quartz walls were measured, which can be used as boundary conditions for numerical simulations. An atmospheric swirl-stabilized flame was used to study transient temperature changes on the bluff body. For this purpose, a high-speed setup (1 kHz) was used to measure the wall temperatures at an operating condition where the flame switches between being attached (M-flame) and being lifted (V-flame) (bistable). The influence of a precessing vortex core (PVC) present during M-flame periods is identified on the bluff body tip, but not at positions further inside the nozzle.


Author(s):  
L. Rosentsvit ◽  
Y. Levy ◽  
V. Erenburg ◽  
V. Sherbaum ◽  
V. Ovcharenko ◽  
...  

The present work is concerned with improving combustion stability in lean premixed (LP) gas turbine combustors by injecting free radicals into the combustion zone. The work is a joint experimental and numerical effort aimed at investigating the feasibility of incorporating a circumferential pilot combustor, which operates under rich conditions and directs its radicals enriched exhaust gases into the main combustion zone as the means for stabilization. The investigation includes the development of a chemical reactors network (CRN) model that is based on perfectly stirred reactors modules and on preliminary CFD analysis as well as on testing the method on an experimental model under laboratory conditions. The study is based on the hypothesis that under lean combustion conditions, combustion instability is linked to local extinctions of the flame and consequently, there is a direct correlation between the limiting conditions affecting combustion instability and the lean blowout (LBO) limit of the flame. The experimental results demonstrated the potential reduction of the combustion chamber's LBO limit while maintaining overall NOx emission concentration values within the typical range of low NOx burners and its delicate dependence on the equivalence ratio of the ring pilot flame. A similar result was revealed through the developed CHEMKIN-PRO CRN model that was applied to find the LBO limits of the combined pilot burner and main combustor system, while monitoring the associated emissions. Hence, both the CRN model, and the experimental results, indicate that the radicals enriched ring jet is effective at stabilizing the LP flame, while keeping the NOx emission level within the characteristic range of low NOx combustors.


2006 ◽  
Vol 53 (2) ◽  
pp. 415-420 ◽  
Author(s):  
M. Morimoto ◽  
K. Aiba ◽  
T. Sakurai ◽  
A. Hoshino ◽  
M. Fujiwara

Author(s):  
Dominik Ebi ◽  
Peter Jansohn

Abstract Operating stationary gas turbines on hydrogen-rich fuels offers a pathway to significantly reduce greenhouse gas emissions in the power generation sector. A key challenge in the design of lean-premixed burners, which are flexible in terms of the amount of hydrogen in the fuel across a wide range and still adhere to the required emissions levels, is to prevent flame flashback. However, systematic investigations on flashback at gas turbine relevant conditions to support combustor development are sparse. The current work addresses the need for an improved understanding with an experimental study on boundary layer flashback in a generic swirl burner up to 7.5 bar and 300° C preheat temperature. Methane-hydrogen-air flames with 50 to 85% hydrogen by volume were investigated. High-speed imaging was applied to reveal the flame propagation pathway during flashback events. Flashback limits are reported in terms of the equivalence ratio for a given pressure, preheat temperature, bulk flow velocity and hydrogen content. The wall temperature of the center body along which the flame propagated during flashback events has been controlled by an oil heating/cooling system. This way, the effect any of the control parameters, e.g. pressure, had on the flashback limit was de-coupled from the otherwise inherently associated change in heat load on the wall and thus change in wall temperature. The results show that the preheat temperature has a weaker effect on the flashback propensity than expected. Increasing the pressure from atmospheric conditions to 2.5 bar strongly increases the flashback risk, but hardly affects the flashback limit beyond 2.5 bar.


2021 ◽  
pp. 5-17
Author(s):  
Sergey A. GANDZHA ◽  
◽  
Nikolay I. NEUSTROEV ◽  
Pavel A. TARANENKO ◽  
◽  
...  

The modern power industry is characterized by intense development of distributed generation, with which numerous sources of different capacities are connected into a single network. This makes it possible to improve the reliability of the entire system, since the probability of several sources to fail simultaneously is quite low. Electric generation based on high-speed gas turbine units accounts for a significant share in the overall balance, due to which scientific research and new engineering solutions in this area are important and relevant. An innovative design of a high-speed gas turbine unit based on a switched axial generator is proposed. This electrical machine has a diamagnetic armature, which eliminates magnetic losses, due to which better efficiency of the power unit is achieved and its design is simplified. The high speed of rotation and the presence of critical resonant rotor speeds generated the need to adopt appropriate engineering decisions in regard of its supports. A combined suspension involving the use of magnetic and gas-dynamic bearings is proposed. The magnetic bearings support the gas turbine unit operation at low speeds during its acceleration, and the gas-dynamic bearings support its operation at high nominal speed. The generator design and the combined suspension layout are shown. The numerical analyses of magnetic and gas-dynamic bearings for a gas turbine unit for a capacity of 100 kW and rotation speed of 70 000 rpm are given. The study results can be used for a series of gas turbine units with capacities ranging from 10 to 500 kW. In our opinion, this concept is competitive with modern analogs with a radial generator design.


2021 ◽  
pp. 82-85
Author(s):  
A.S. Politov ◽  
R.R. Latypov

The comparative studies results of the durability of cutting properties of new and restored by regrinding and repeated plasma hardening with the application of multi-layer Si—O—C—N nanocoating system (PECVD by cold atmospheric plasma) powder high — speed steels broaches teeth for the processing of hard-to-process materials profilecomposite gas-turbine engines components are presented.


Sign in / Sign up

Export Citation Format

Share Document