Ultrasound Image Preprocessing Method for Deep-Learning-Based Fatty Liver Diagnosis

Author(s):  
Yongle Hu ◽  
Yusheng Lian ◽  
Yanxing Liu ◽  
Yang Jin ◽  
Xiaojie Hu ◽  
...  
2021 ◽  
Vol 12 (1) ◽  
pp. 123
Author(s):  
Gwang-ho Yun ◽  
Sang-jin Oh ◽  
Sung-chul Shin

Welding defects must be inspected to verify that the welds meet the requirements of ship welded joints, and in welding defect inspection, among nondestructive inspections, radiographic inspection is widely applied during the production process. To perform nondestructive inspection, the completed weldment must be transported to the nondestructive inspection station, which is expensive; consequently, automation of welding defect detection is required. Recently, at several processing sites of companies, continuous attempts are being made to combine deep learning to detect defects more accurately. Preprocessing for welding defects in radiographic inspection images should be prioritized to automatically detect welding defects using deep learning during radiographic nondestructive inspection. In this study, by analyzing the pixel values, we developed an image preprocessing method that can integrate the defect features. After maximizing the contrast between the defect and background in radiographic through CLAHE (contrast-limited adaptive histogram equalization), denoising (noise removal), thresholding (threshold processing), and concatenation were sequentially performed. The improvement in detection performance due to preprocessing was verified by comparing the results of the application of the algorithm on raw images, typical preprocessed images, and preprocessed images. The mAP for the training data and test data was 84.9% and 51.2% for the preprocessed image learning model, whereas 82.0% and 43.5% for the typical preprocessed image learning model and 78.0%, 40.8% for the raw image learning model. Object detection algorithm technology is developed every year, and the mAP is improving by approximately 3% to 10%. This study achieved a comparable performance improvement by only preprocessing with data.


Sensors ◽  
2021 ◽  
Vol 21 (8) ◽  
pp. 2629
Author(s):  
Kunkyu Lee ◽  
Min Kim ◽  
Changhyun Lim ◽  
Tai-Kyong Song

Point-of-care ultrasound (POCUS), realized by recent developments in portable ultrasound imaging systems for prompt diagnosis and treatment, has become a major tool in accidents or emergencies. Concomitantly, the number of untrained/unskilled staff not familiar with the operation of the ultrasound system for diagnosis is increasing. By providing an imaging guide to assist clinical decisions and support diagnosis, the risk brought by inexperienced users can be managed. Recently, deep learning has been employed to guide users in ultrasound scanning and diagnosis. However, in a cloud-based ultrasonic artificial intelligence system, the use of POCUS is limited due to information security, network integrity, and significant energy consumption. To address this, we propose (1) a structure that simultaneously provides ultrasound imaging and a mobile device-based ultrasound image guide using deep learning, and (2) a reverse scan conversion (RSC) method for building an ultrasound training dataset to increase the accuracy of the deep learning model. Experimental results show that the proposed structure can achieve ultrasound imaging and deep learning simultaneously at a maximum rate of 42.9 frames per second, and that the RSC method improves the image classification accuracy by more than 3%.


2021 ◽  
pp. 1-1
Author(s):  
Wu Wei ◽  
Jun Yan ◽  
Xiaofu Wu ◽  
Chen Wang ◽  
Gengxin Zhang

Author(s):  
Morteza Heidari ◽  
Seyedehnafiseh Mirniaharikandehei ◽  
Abolfazl Zargari Khuzani ◽  
Gopichandh Danala ◽  
Yuchen Qiu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document