Develop an Al-Alloy for High-Pressure–High-Temperature Applications by Enhancing Thermo-Mechanical Properties

Author(s):  
J. Joy Mathavan ◽  
A. Kunaraj ◽  
N. Sakthivelnathan
2002 ◽  
Vol 75 (5) ◽  
pp. 955-968 ◽  
Author(s):  
Jeremy E. Morin ◽  
Drew E. Williams ◽  
Richard J. Farris

Abstract High-pressure high-temperature sintering (HPHTS) is a novel recycling technique that makes it possible to recycle vulcanized rubber powders made from waste rubber (namely scrap tires) through only the application of heat and pressure. A brief look into the mechanism of sintering will be presented along with information about the influence of molding variables, such as time, temperature, pressure and rubber particle size on the mechanical properties of the produced parts. One of the most interesting observations is that powders of every crosslinked elastomer attempted sintered together via this technique, including silicone rubber (SI), sulfur cured [natural rubber (NR), ethylene-propylene-diene rubber (EPDM), styrene-butadiene rubber (SBR)], peroxide cured butadiene rubber (BR), and fluoroelastomers (FKM). Early work on sintered rubber made from commercially available rubber powder had a modulus of 1 to 2 MPa, strength of 4 to 7 MPa and an elongation at break of 150–250%. Recently, in-house ground samples of SBR have had sintered values over 9.5 MPa strength and 275% elongation, or greater than 60% retention of the original properties. Many of these mechanical properties are comparable with industrially manufactured rubbers, and it is believed that recycled rubbers produced via HPHTS offer the potential to replace virgin rubber in numerous applications.


CrystEngComm ◽  
2022 ◽  
Author(s):  
Jian Wang ◽  
Zhiwen Wang ◽  
Yongkui Wang ◽  
Hongan Ma ◽  
Shuai Fang ◽  
...  

MgO (10 mol%)-stabilized zirconia ceramics were obtained using high-pressure high-temperature (HPHT) sintering. The effects of the sintering pressure (2.5, 3.7, and 5.0 GPa) on the phase transformations and hardness were...


2010 ◽  
Vol 63 ◽  
pp. 396-401 ◽  
Author(s):  
Piotr Klimczyk

Three types: micro-, submicro- and nano-structured Si3N4-SiC composites have been obtained by High Pressure-High Temperature (HPHT) sintering. Density, Young modulus, hardness and fracture toughness have been measured. Composites obtained from sub-micron powders are characterized by better mechanical properties than composites obtained from nanopowders.


Sign in / Sign up

Export Citation Format

Share Document