The Role of Nanoparticle-Gemini Surfactant to Improve the Flowability of the Malaysian Crude Oil

Author(s):  
Shamala Devi VijayaKumar ◽  
Junaidi Zakaria ◽  
Norida Ridzuan
Keyword(s):  
2021 ◽  
Author(s):  
Yuanhao Li ◽  
Jian Zhao ◽  
Hang Dong ◽  
Xiangrui Xi

The microstructure and dynamical behaviors of wax crystals in waxy crude oil are the fundamental reasons for a series of physical phenomena in the process of transportation. In order to...


2021 ◽  
Vol 73 ◽  
pp. 102173
Author(s):  
Zibo Niu ◽  
Yuanyuan Liu ◽  
Wang Gao ◽  
Hongwei Zhang

Energies ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4173
Author(s):  
Rangan Gupta ◽  
Christian Pierdzioch

We use a dataset for the group of G7 countries and China to study the out-of-sample predictive value of uncertainty and its international spillovers for the realized variance of crude oil (West Texas Intermediate and Brent) over the sample period from 1996Q1 to 2020Q4. Using the Lasso estimator, we found evidence that uncertainty and international spillovers had predictive value for the realized variance at intermediate (two quarters) and long (one year) forecasting horizons in several of the forecasting models that we studied. This result holds also for upside (good) and downside (bad) variance, and irrespective of whether we used a recursive or a rolling estimation window. Our results have important implications for investors and policymakers.


Energies ◽  
2019 ◽  
Vol 12 (22) ◽  
pp. 4325
Author(s):  
Zhihua Wang ◽  
Yunfei Xu ◽  
Yi Zhao ◽  
Zhimin Li ◽  
Yang Liu ◽  
...  

Wax deposition during crude oil transmission can cause a series of negative effects and lead to problems associated with pipeline safety. A considerable number of previous works have investigated the wax deposition mechanism, inhibition technology, and remediation methods. However, studies on the shearing mechanism of wax deposition have focused largely on the characterization of this phenomena. The role of the shearing mechanism on wax deposition has not been completely clarified. This mechanism can be divided into the shearing dispersion effect caused by radial migration of wax particles and the shearing stripping effect caused by hydrodynamic scouring. From the perspective of energy analysis, a novel wax deposition model was proposed that considered the flow parameters of waxy crude oil in pipelines instead of its rheological parameters. Considering the two effects of shearing dispersion and shearing stripping coexist, with either one of them being the dominant mechanism, a shearing dispersion flux model and a shearing stripping model were established. Furthermore, a quantitative method to distinguish between the roles of shearing dispersion and shearing stripping in wax deposition was developed. The results indicated that the shearing mechanism can contribute an average of approximately 10% and a maximum of nearly 30% to the wax deposition process. With an increase in the oil flow rate, the effect of the shearing mechanism on wax deposition is enhanced, and its contribution was demonstrated to be negative; shear stripping was observed to be the dominant mechanism. A critical flow rate was observed when the dominant effect changes. When the oil flow rate is lower than the critical flow rate, the shearing dispersion effect is the dominant effect; its contribution rate increases with an increase in the oil flow temperature. When the oil flow rate is higher than the critical flow rate, the shearing stripping effect is the dominant effect; its contribution rate increases with an increase in the oil flow temperature. This understanding can be used to design operational parameters of the actual crude oil pipelines and address the potential flow assurance problems. The results of this study are of great significance for understanding the wax deposition theory of crude oil and accelerating the development of petroleum industry pipelines.


2021 ◽  
Author(s):  
Ivan Indriawan ◽  
Donald Lien ◽  
Zhuzhu Wen ◽  
Yahua Xu

Sign in / Sign up

Export Citation Format

Share Document