Review on Secure Ad-Hoc Networks for Wireless Sensor Network

2021 ◽  
pp. 145-153
Author(s):  
Kanika Chauhan ◽  
Kalpana Yadav ◽  
Ankita Singh
2012 ◽  
Vol 3 (1) ◽  
pp. 158-161 ◽  
Author(s):  
A.V Pramod ◽  
Md. Abdul Azeem ◽  
M. Om Prakash

Mobility is frequently a problem for providing security services  in ad hoc networks. In this paper, we render that mobility can alsobe used to enhance security. Specifically, we render that nodes which are in  passively monitor traffic in the network can able to detect a Sybil attacker which uses a number of network identities simultaneously. We can do through simulation that this detection can be done by a single node, or multiple trusted nodes can join to improve the accuracy of detection. We then show that although the detection mechanism will falsely identify groups of nodes traveling together as a Sybil attacker, we can extend the protocol to monitor collisions at the MAC level to differentiate between a single attacker spoofing many addresses and a group of nodes traveling in close proximity.


2012 ◽  
pp. 864-892
Author(s):  
Jianmin Chen ◽  
Jie Wu

Many secure mobile ad hoc networks (MANETs) and wireless sensor networks (WSNs) use techniques of applied cryptography. Numerous security routing protocols and key management schemes have been designed based on public key infrastructure (PKI) and identity-based cryptography. Some of these security protocols are fully adapted to fit the limited power, storage, and CPUs of these networks. For example, one-way hash functions have been used to construct disposable secret keys instead of creating public/private keys for the public key infrastructure. In this survey of MANET and WSN applications we present many network security schemes using cryptographic techniques and give three case studies of popular designs.


Author(s):  
Phan Cong-Vinh

In mobile environments (MEs) such as vehicular ad hoc networks (VANETs), mobile ad hoc networks (MANETs), wireless sensor networks (WSNs), and so on, formal specification of self-configuring P2P networking (SPN) emerges as a need for programming, and verifying such mobile networks. Moreover, well-specified SPN in MEs becomes a requirement of developing middleware for the mobile networks. The chapter is a reference material for readers who already have a basic understanding of the MEs for their applications and are now ready to know how to specify and verify formally aspect-oriented self-configuring P2P networking (ASPN) in MEs using categorical language, assured that their computing needs are handled correctly and efficiently. ASPN in MEs is presented in a straightforward fashion by discussing in detail the necessary components and briefly touching on the more advanced components. Several explanatory notes and examples are represented throughout the chapter as a moderation of the formal descriptions. Significant properties of ASPN in MEs, which emerge from the specification, create the firm criteria for verification.


Sign in / Sign up

Export Citation Format

Share Document