An Improved Ionospheric Estimation Algorithm for Low-Frequency SAR Interferometry

Author(s):  
Beixin Qin ◽  
Yongsheng Zhang ◽  
Zaoyu Sun ◽  
Xiaoxiang Zhu
Author(s):  
Xu Shuang

With the explosive growth in the number of communication users and the huge demand for data from users, Limited low-frequency resources have been far from being satisfied by users. The combination of Massive MIMO technology and millimeter-wave technology has brought new hope to users. In this paper, several basic algorithms are placed under the millimeter wave large-scale antenna channel for simulation research.


2013 ◽  
Vol 558 ◽  
pp. 227-234
Author(s):  
Jong Woong Park ◽  
Sung Han Sim ◽  
Hyung Jo Jung ◽  
Billie F. Spencer

A displacement measurement provides useful information for structural health monitoring (SHM) as it is directly related to stiffness of the structure. Most existing methods of direct measurement such as the Laser Doppler Vibrometer (LDV) and the Liner Variable Differential Transformer (LVDT) are known to have accurate performance but have difficulties particularly in the use of large-scale civil structures as the methods rely on fixed reference points. Alternatively, indirect methods have been developed and widely used methods are Global Positioning System (GPS), vision-based displacement measurement system and displacement estimation from acceleration record. Among the indirect method, the use of accelerometer provides simple and economical in term of both hardware installation and operation. The major problem using acceleration based displacement estimation is low frequency drift caused by double integration. Recently, dynamic displacement estimation algorithm that addresses low-frequency drift problem has been developed. This study utilizes Wireless Smart Sensor (WSN) for estimating dynamic displacement from acceleration measurement in combination with the recently developed displacement estimation algorithm. Integrated into WSN that are low-cost, wireless, compatible with accelerometers, and capable of onboard computation, the displacement can be measured without limit of location on large-scale civil structures. Thus, this approach has the significant potential to impact many applications that require displacement measurements. With the displacement estimation algorithm embedded, the WSN performs in-network data processing to estimate displacements at each distributed sensor location wirelessly using only measured acceleration data. To experimentally validate the performance of displacement estimation using WSN for the use in structures with multiple-degree of freedom, the random vibration test is conducted on the three-story shear building model. The estimated displacement is compared with the reference displacements measured from the laser displacement sensor and the result shows good agreement.


Author(s):  
K. Hama

The lateral line organs of the sea eel consist of canal and pit organs which are different in function. The former is a low frequency vibration detector whereas the latter functions as an ion receptor as well as a mechano receptor.The fine structure of the sensory epithelia of both organs were studied by means of ordinary transmission electron microscope, high voltage electron microscope and of surface scanning electron microscope.The sensory cells of the canal organ are polarized in front-caudal direction and those of the pit organ are polarized in dorso-ventral direction. The sensory epithelia of both organs have thinner surface coats compared to the surrounding ordinary epithelial cells, which have very thick fuzzy coatings on the apical surface.


Author(s):  
Robert E. Nordquist ◽  
J. Hill Anglin ◽  
Michael P. Lerner

A human breast carcinoma cell line (BOT-2) was derived from an infiltrating duct carcinoma (1). These cells were shown to have antigens that selectively bound antibodies from breast cancer patient sera (2). Furthermore, these tumor specific antigens could be removed from the living cells by low frequency sonication and have been partially characterized (3). These proteins have been shown to be around 100,000 MW and contain approximately 6% hexose and hexosamines. However, only the hexosamines appear to be available for lectin binding. This study was designed to use Concanavalin A (Con A) and Ricinus Communis (Ricin) agglutinin for the topagraphical localization of D-mannopyranosyl or glucopyranosyl and D-galactopyranosyl or DN- acetyl glactopyranosyl configurations on BOT-2 cell surfaces.


Author(s):  
P. A. Marsh ◽  
T. Mullens ◽  
D. Price

It is possible to exceed the guaranteed resolution on most electron microscopes by careful attention to microscope parameters essential for high resolution work. While our experience is related to a Philips EM-200, we hope that some of these comments will apply to all electron microscopes.The first considerations are vibration and magnetic fields. These are usually measured at the pre-installation survey and must be within specifications. It has been our experience, however, that these factors can be greatly influenced by the new facilities and therefore must be rechecked after the installation is completed. The relationship between the resolving power of an EM-200 and the maximum tolerable low frequency interference fields in milli-Oerstedt is 10 Å - 1.9, 8 Å - 1.4, 6 Å - 0.8.


Author(s):  
G. Y. Fan ◽  
J. M. Cowley

It is well known that the structure information on the specimen is not always faithfully transferred through the electron microscope. Firstly, the spatial frequency spectrum is modulated by the transfer function (TF) at the focal plane. Secondly, the spectrum suffers high frequency cut-off by the aperture (or effectively damping terms such as chromatic aberration). While these do not have essential effect on imaging crystal periodicity as long as the low order Bragg spots are inside the aperture, although the contrast may be reversed, they may change the appearance of images of amorphous materials completely. Because the spectrum of amorphous materials is continuous, modulation of it emphasizes some components while weakening others. Especially the cut-off of high frequency components, which contribute to amorphous image just as strongly as low frequency components can have a fundamental effect. This can be illustrated through computer simulation. Imaging of a whitenoise object with an electron microscope without TF limitation gives Fig. 1a, which is obtained by Fourier transformation of a constant amplitude combined with random phases generated by computer.


Sign in / Sign up

Export Citation Format

Share Document