Robust Fixed-Time Attitude Stabilization of Flexible Spacecraft via Active Disturbance Rejection Method

2021 ◽  
pp. 813-823
Author(s):  
Yuhang Wang ◽  
Yingmin Jia
Electronics ◽  
2018 ◽  
Vol 7 (12) ◽  
pp. 357 ◽  
Author(s):  
Chunlin Song ◽  
Changzhu Wei ◽  
Feng Yang ◽  
Naigang Cui

This article presents a fixed-time active disturbance rejection control approach for the attitude control problem of quadrotor unmanned aerial vehicle in the presence of dynamic wind, mass eccentricity and an actuator fault. The control scheme applies the feedback linearization technique and enhances the performance of the traditional active disturbance rejection control (ADRC) based on the fixed-time high-order sliding mode method. A switching-type uniformly convergent differentiator is used to improve the extended state observer for estimating and attenuating the lumped disturbance more accurately. A multivariable high-order sliding mode feedback law is derived to achieve fixed time convergence. The timely convergence of the designed extended state observer and the feedback law is proved theoretically. Mathematical simulations with detailed actuator models and real time experiments are performed to demonstrate the robustness and practicability of the proposed control scheme.


2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
Chunhua Cheng ◽  
Hang Yang ◽  
Qian Wang ◽  
Lin Li ◽  
Qiang Han ◽  
...  

A compound control based on active disturbance rejection control (ADRC) scheme and slide mode control (SMC) is proposed to investigate the attitude tracking problem for a spacecraft with modeling uncertainties, external disturbances, actuator failures, and actuator saturations simultaneously. A positive term including control input is separated from the system, and then, the active disturbance rejection concept and the extended state observer (ESO) are applied to deal with the general uncertain item caused by uncertainties, external disturbances, actuator failures, and actuator saturations. The sliding mode surface is designed to transform the attitude tracking problem into attitude stabilization problem. In order to deal with the actuator saturations, a saturation degree coefficient and its corresponding adaptive law are introduced. Compared to other existing references, the proposed scheme does not need to know the structure or upper bound information of the inertial matrix uncertainties and external disturbances. Finally, the stability of the closed-loop system is analyzed by using input to state stability theory. Simulation results are given to verify the effectiveness of the proposed scheme. More importantly, the proposed technique can also be applied to the attitude stabilization of other aircraft, such as the attitude of unmanned aerial vehicle and helicopter in maritime rescue.


Sign in / Sign up

Export Citation Format

Share Document