Potential Development of Floating Offshore Wind Turbine in Vietnam Offshore

Author(s):  
Thanh-Dam Pham ◽  
Du Van Toan ◽  
Thi-Khang Nguyen ◽  
Hyunjeong Ahn ◽  
Hyunkyoung Shin
Energies ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4138
Author(s):  
Kwansu Kim ◽  
Hyunjong Kim ◽  
Hyungyu Kim ◽  
Jaehoon Son ◽  
Jungtae Kim ◽  
...  

In this study, a resonance avoidance control algorithm was designed to address the tower resonance problem of a semi-submersible floating offshore wind turbine (FOWT) and the dynamic performance of the wind turbine, floater platform, and mooring lines at two exclusion zone ranges were evaluated. The simulations were performed using Bladed, a commercial software for wind turbine analysis. The length of simulation for the analysis of the dynamic response of the six degrees of freedom (DoF) motion of the floater platform under a specific load case was 3600 s. The simulation results are presented in terms of the time domain, frequency domain, and using statistical analysis. As a result of applying the resonance avoidance control algorithm, when the exclusion zone range was ±0.5 rpm from the resonance rpm, the overall performance of the wind turbine was negatively affected, and when the range was sufficiently wide at ±1 rpm, the mean power was reduced by 0.04%, and the damage equivalent load of the tower base side–side bending moment was reduced by 14.02%. The tower resonance problem of the FOWT caused by practical limitations in design and cost issues can be resolved by changing the torque control algorithm.


Author(s):  
H. K. Jang ◽  
H. C. Kim ◽  
M. H. Kim ◽  
K. H. Kim

Numerical tools for a single floating offshore wind turbine (FOWT) have been developed by a number of researchers, while the investigation of multi-unit floating offshore wind turbines (MUFOWT) has rarely been performed. Recently, a numerical simulator was developed by TAMU to analyze the coupled dynamics of MUFOWT including multi-rotor-floater-mooring coupled effects. In the present study, the behavior of MUFOWT in time domain is described through the comparison of two load cases in maximum operational and survival conditions. A semi-submersible floater with four 2MW wind turbines, moored by eight mooring lines is selected as an example. The combination of irregular random waves, steady currents and dynamic turbulent winds are applied as environmental loads. As a result, the global motion and kinetic responses of the system are assessed in time domain. Kane’s dynamic theory is employed to formulate the global coupled dynamic equation of the whole system. The coupling terms are carefully considered to address the interactions among multiple turbines. This newly developed tool will be helpful in the future to evaluate the performance of MUFOWT under diverse environmental scenarios. In the present study, the aerodynamic interactions among multiple turbines including wake/array effect are not considered due to the complexity and uncertainty.


2021 ◽  
Author(s):  
Zhiyong Yang ◽  
Xiaoqiang Bian ◽  
Yu Shi

Abstract In the near future, the offshore wind industry will experience a significant increase of turbine size and of floating wind development activities. A floating offshore wind turbine foundation offers many advantages, such as flexibility in site selection, access to better offshore wind resources, and quayside integration to avoid a costly heavy lift vessel offshore campaign. PyraWind™ is a patented three canted column semisubmersible floating foundation for ultra large offshore wind turbines. It is designed to accommodate a wind turbine, 14 MW or larger, in the center of the interconnected columns of the hull with minimal modifications to the tower, nacelle and turbine. The pyramid-shaped hull provides a stable, solid foundation for the large wind turbine under development. This paper summarizes the feasibility study conducted for the PyraWind™ concept. The design basis for wind turbine floating foundations is described and the regulatory requirements are discussed. Also included are the hydrodynamic analysis of the hull and ongoing work consisting of coupling hull hydrodynamics with wind-turbine aerodynamic loads. The fully coupled system was analyzed using OpenFAST, an aerodynamic software package for wind turbine analysis with the ability to be coupled with the hydrodynamic model. Due to the canted columns, a nonlinear analysis was performed using the coupled numerical hydrodynamic model of the platform with mooring system in extreme sea states.


Author(s):  
Tomoaki Utsunomiya ◽  
Shigeo Yoshida ◽  
Hiroshi Ookubo ◽  
Iku Sato ◽  
Shigesuke Ishida

This paper is concerned with the development of a Floating Offshore Wind Turbine (FOWT) utilizing spar-type floating foundation. In order to design such a structure, it is essential to evaluate the dynamic response under extreme environmental conditions. In this study, therefore, a dynamic analysis tool has been developed. The dynamic analysis tool consists of a multi-body dynamics solver (MSC.Adams), aerodynamic force evaluation library (NREL/AeroDyn), hydrodynamic force evaluation library (In-house program named SparDyn), and mooring force evaluation library (In-house program named Moorsys). In this paper, some details of the developed dynamic analysis tool are given. In order to validate the program, comparison with the experimental results, where the wind, current and wave are applied simultaneously, has been made. The comparison shows that satisfactory agreements between the simulation and the experimental results are obtained. However, when VIM (Vortex Induced Motion) occurs, the current loads and cross flow responses (sway and roll) are underestimated by the simulation since the simulation code does not account for the effect of VIM.


Sign in / Sign up

Export Citation Format

Share Document