Deformation, Peak Strength and Crack Damage Behavior of Hollow Sandstone Under Conventional Triaxial Compression

Author(s):  
Sheng-Qi Yang
2011 ◽  
Vol 368-373 ◽  
pp. 2891-2894
Author(s):  
San Qing Su ◽  
Bo Tuan Deng ◽  
Jun Feng Hou ◽  
Zhen Lv

The conventional triaxial compression(CTC), triaxial compression(TC) and reduce triaxial compression(RTC) of ordinary loess in Xi,an Ba He was conducted with GDS stress path tests and the strength behavior and deformation capacity of loess was studied. The experimental results showed that the larger the initial moisture content, the smaller the shear strength. The strength characteristic of loess varied under different stress path. Relationships between σ and ε was strain hardening model. The peak strength of CTC is larger than that of TC and the peak strength of RTC was smaller.


2012 ◽  
Vol 170-173 ◽  
pp. 322-326
Author(s):  
Kui Chen ◽  
Ren Hua Yang ◽  
Tao Xu ◽  
Ya Jing Qi

In order to study the relationship between the design parameters of the shield machine and the strength of rock, the behaviours of rocks under the conventional triaxial compression, the complete stress-strain curves under different confining pressures of three typical rocks, i.e. granite, limestone and red sandstone, were taken out for analysis. From the curves, the values of elastic modulus E and Poisson's ratio μ were gained and the relationships between the following parameters were figured out, which are peak strength versus confining pressure, residual strength versus confining pressure, strain at peak strength versus confining pressure, and strain at residual strength versus confining pressure. According to the values and relationships, the complete stress-strain curves were divided into three parts. For each part, a constitutive equation was established by using the strain softening trilinear elastic-brittle-plastic constitutive model, and all the related parameters in the constitutive equations were also presented, which provide a theoretical foundation for the digital design of the cutter head and cutters of Shield machine.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Yugui Yang ◽  
Feng Gao ◽  
Hongmei Cheng ◽  
Yuanming Lai ◽  
Xiangxiang Zhang

The researches on the mechanical characteristic and constitutive models of frozen soil have important meanings in structural design of deep frozen soil wall. In the present study, the triaxial compression and creep tests have been carried out, and the mechanical characteristic of frozen silt is obtained. The experiment results show that the deformation characteristic of frozen silt is related to confining pressure under conventional triaxial compression condition. The frozen silt presents strain softening in shear process; with increase of confining pressure, the strain softening characteristic gradually decreases. The creep curves of frozen silt present the decaying and the stable creep stages under low stress level; however, under high stress level, once the strain increases to a critical value, the creep strain velocity gradually increases and the specimen quickly happens to destroy. To reproduce the deformation behavior, the disturbed state elastoplastic and new creep constitutive models of frozen silt are developed. The comparisons between experimental results and calculated results from constitutive models show that the proposed constitutive models could describe the conventional triaxial compression and creep deformation behaviors of frozen silt.


2020 ◽  
Vol 205 ◽  
pp. 03011
Author(s):  
Aránzazu Piñán-Llamas ◽  
Fawad S. Niazi ◽  
Colton Amstutz ◽  
Zachary Brown

The understanding of the variation of mechanical properties and microstructural changes of rocks due to chemical weathering is critical for prospection, extraction and storage of energy resources in the subsurface. Uniaxial and triaxial compression tests were conducted on fresh and chemically weathered oolitic limestone samples submerged in acidic solutions with pH5 and pH3 values for 30 and 50 days each. Results show that both, acid concentration and exposure period have a significant influence not only in changes of effective porosity, Young’s modulus and peak strength, but also in the development of stress-induced microstructures. While the change in effective porosity increased and the Young’s modulus decreased with exposure time, the peak strength decreased with exposure time and decreasing pH. Micro-fracturing, twinning, and rigid body rotation were the main mechanisms of the deformations observed. The highest density of microcracks and twinned grains were observed in samples subjected to longer exposure periods of time, suggesting that the exposure time constitutes an essential factor in rock softening. Microfracturing initiated at grain boundaries, where stress concentrations were higher. In agreement with previous work on limestone inelastic compaction, the mechanical contrast of allochemical components with respect to cement conditioned the spatial distribution of the microfractures.


2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Jinlong Cai ◽  
Wei Zou

A conventional triaxial compression test of Jurassic-Cretaceous typical weakly consolidated sandstone from a mining area in Ordos, China, was conducted using an MTS816 tester. Results showed that, before the peak, the rock had a distinct yield stage. When the specimen reached its peak strength, the strength decreased rapidly and showed an obvious brittle failure. When the confining pressure was increased to 15 MPa, the decrease of strength was slow and the rock tended toward ductile failure. With the increase of confining pressure, the cyclic strain initially increased slightly, whereas the volumetric strain increased greatly and the rock sample was in a compression state. When the load reached a critical value, the curve was reversely bent, resulting in volume expansion, whereas the peak strength, residual strength, and elastic modulus increased with confining pressure, and Poisson’s ratio decreased with the confining pressure. In the model based on macroscopic failure rock, the expression of the relationship between fracture angle and confining pressure provided a solid theoretical basis for the direction and failure mode of the macroscopic crack. Based on the rock strength theory and Weibull random distribution assumption of rock element strength, the damage variable correction coefficient was introduced when the residual strength was considered. Then, the mathematical expression of the 3D damage statistical constitutive model was established. Finally, the theoretical curve of the established constitutive model was compared with the triaxial test curve, which showed a high degree of coincidence.


Materials ◽  
2020 ◽  
Vol 13 (15) ◽  
pp. 3414
Author(s):  
Chaojun Jia ◽  
Qiang Zhang ◽  
Susheng Wang

The mechanical behavior of the sandstone at the dam site is important to the stability of the hydropower station to be built in Southwest China. A series of triaxial compression tests under different confining pressures were conducted in the laboratory. The critical stresses were determined and the relationship between the critical stress and confining pressure were analyzed. The Young’s modulus increases non-linearly with the confining pressure while the plastic strain increment Nϕ and the dilation angle ϕ showed a negative response. Scanning electron microscope (SEM) tests showed that the failure of the sandstone under compression is a coupled process of crack growth and frictional sliding. Based on the experimental results, a coupled elastoplastic damage model was proposed within the irreversible thermodynamic framework. The plastic deformation and damage evolution were described by using the micromechanical homogenization method. The plastic flow is inherently driven by the damage evolution. Furthermore, a numerical integration algorithm was developed to simulate the coupled elastoplastic damage behavior of sandstone. The main inelastic properties of the sandstone were well captured. The model will be implemented into the finite element method (FEM) to estimate the excavation damaged zones (EDZs) which can provide a reference for the design and construction of such a huge hydropower project.


Sign in / Sign up

Export Citation Format

Share Document