Dual-Fuel Internal Combustion Engines for Sustainable Transport Fuels

Author(s):  
Babalola Aisosa Oni ◽  
Samuel Eshorame Sanni
Energies ◽  
2020 ◽  
Vol 13 (14) ◽  
pp. 3734
Author(s):  
Javier Monsalve-Serrano ◽  
Giacomo Belgiorno ◽  
Gabriele Di Blasio ◽  
María Guzmán-Mendoza

Notwithstanding the policies that move towards electrified powertrains, the transportation sector mainly employs internal combustion engines as the primary propulsion system. In this regard, for medium- to heavy-duty applications, as well as for on- and off-road applications, diesel engines are preferred because of the better efficiency, lower CO2, and greater robustness compared to spark-ignition engines. Due to its use at a large scale, the internal combustion engines as a source of energy depletion and pollutant emissions must further improved. In this sense, the adoption of alternative combustion concepts using cleaner fuels than diesel (e.g., natural gas, ethanol and methanol) presents a viable solution for improving the efficiency and emissions of the future powertrains. Particularly, the methane–diesel dual-fuel concept represents a possible solution for compression ignition engines because the use of the low-carbon methane fuel, a main constituent of natural gas, as primary fuel significantly reduces the CO2 emissions compared to conventional liquid fuels. Nonetheless, other issues concerning higher total hydrocarbon (THC) and CO emissions, mainly at low load conditions, are found. To minimize this issue, this research paper evaluates, through a new and alternative approach, the effects of different engine control parameters, such as rail pressure, pilot quantity, start of injection and premixed ratio in terms of efficiency and emissions, and compared to the conventional diesel combustion mode. Indeed, for a deeper understanding of the results, a 1-Dimensional spray model is used to model the air-fuel mixing phenomenon in response to the variations of the calibration parameters that condition the subsequent dual-fuel combustion evolution. Specific variation settings, in terms of premixed ratio, injection pressure, pilot quantity and combustion phasing are proposed for further efficiency improvements.


Author(s):  
Miroslav P. Petrov ◽  
Thomas Stenhede ◽  
Andrew R. Martin ◽  
Laszlo Hunyadi

Hybrid dual-fuel combined cycle power plants employ two or more different fuels (one of which is typically a solid fuel), utilized by two or more different prime movers with a thermal coupling in between. Major thermodynamic and economic advantages of hybrid combined cycle configurations have been pointed out by various authors in previous studies. The present investigation considers the performance of natural gas and biomass hybrid combined cycles in small scale, with an internal combustion engine as topping cycle and a steam boiler/turbine as bottoming cycle. A parametric analysis evaluates the impact of natural gas to biomass fuel energy ratio on the electrical efficiency of various hybrid configurations. Results show that significant performance improvements with standard technology can be achieved by these hybrid configurations when compared to the reference (two independent, single-fuel power plants at the relevant scales). Electrical efficiency of natural gas energy conversion can reach up to 57–58% LHV, while the efficiency attributed to the bottoming fuel rises with up to 4 percentage points. In contrast to hybrid cycles with gas turbines as topping cycle, hybrid configurations with internal combustion engines show remarkably similar performance independent of type of configuration, at low shares of natural gas fuel input.


2019 ◽  
Vol 26 (2) ◽  
pp. 45-52
Author(s):  
Mariusz Giernalczyk

Abstract The use of gas/LNG to supply marine engines in addition to tangible economic benefits is also a method of limiting emissions of harmful substances into the atmosphere and meeting strict environmental protection regulations, especially in special areas. The technology of supplying liquid and gas fuels (Dual Fuel) is most easily used in four-stroke engines but the highest thermal efficiency is ensured by combustion two-stroke piston engines. However, in the first two-stroke dual-fuel engines, the gas supply installation was more complicated than in the four-stroke engine. It resulted, among others from the necessity of compressing the gas to high pressures (15÷30 MPa), for which extremely energy-consuming multi-stage compression systems were needed. The complicated technical system is inherently prone to failures, which is why the dual-fuel low-speed two-stroke diesel engines remained for a long period in the design and experimental phase. In recent years, there has been a significant breakthrough thanks to the introduction of new solutions with the possibility of supplying two-stroke engines with low-pressure gas (less than 1.6 MPa). In recent years, many ships powered by two-stroke, dual-fuel internal combustion engines were commissioned. Some ship-owners owning a fleet of LNG carriers with two-stroke diesel engines that so far have been powered only by liquid fuels have decided to adapt them to gas combustion. This required the adaptation of the engine for gas combustion and the expansion of the supply gas fuel system. This paper is an attempt to analyse the legitimacy of introducing two-stroke, dual-fuel internal combustion engines into the propulsion system and adaptation of engines that are already used to burn gas in them. It presents the changes introduced on one of the LNG gas carriers consisting in adapting the engine to gas combustion through modification of the cylinder head and fuel supply installation. Parameter results of the modified engines obtained during sea trials have been presented. Both advantages and disadvantages resulting from gas combustion have been pointed out. Finally, the possibility of this solution application to other LNG carriers was assessed.


Sign in / Sign up

Export Citation Format

Share Document