scholarly journals Analysis of the Possibility of Using Low Speed Two-Stroke Dual-Fuel Engines for Propulsion of Sea-Going Vessels

2019 ◽  
Vol 26 (2) ◽  
pp. 45-52
Author(s):  
Mariusz Giernalczyk

Abstract The use of gas/LNG to supply marine engines in addition to tangible economic benefits is also a method of limiting emissions of harmful substances into the atmosphere and meeting strict environmental protection regulations, especially in special areas. The technology of supplying liquid and gas fuels (Dual Fuel) is most easily used in four-stroke engines but the highest thermal efficiency is ensured by combustion two-stroke piston engines. However, in the first two-stroke dual-fuel engines, the gas supply installation was more complicated than in the four-stroke engine. It resulted, among others from the necessity of compressing the gas to high pressures (15÷30 MPa), for which extremely energy-consuming multi-stage compression systems were needed. The complicated technical system is inherently prone to failures, which is why the dual-fuel low-speed two-stroke diesel engines remained for a long period in the design and experimental phase. In recent years, there has been a significant breakthrough thanks to the introduction of new solutions with the possibility of supplying two-stroke engines with low-pressure gas (less than 1.6 MPa). In recent years, many ships powered by two-stroke, dual-fuel internal combustion engines were commissioned. Some ship-owners owning a fleet of LNG carriers with two-stroke diesel engines that so far have been powered only by liquid fuels have decided to adapt them to gas combustion. This required the adaptation of the engine for gas combustion and the expansion of the supply gas fuel system. This paper is an attempt to analyse the legitimacy of introducing two-stroke, dual-fuel internal combustion engines into the propulsion system and adaptation of engines that are already used to burn gas in them. It presents the changes introduced on one of the LNG gas carriers consisting in adapting the engine to gas combustion through modification of the cylinder head and fuel supply installation. Parameter results of the modified engines obtained during sea trials have been presented. Both advantages and disadvantages resulting from gas combustion have been pointed out. Finally, the possibility of this solution application to other LNG carriers was assessed.

Author(s):  
Лемешева ◽  
E. Lemesheva ◽  
Митин ◽  
S. Mitin ◽  
Кондрико ◽  
...  

The article analyzes the effective methods and techniques of diagnosing gasoline internal combustion engines, highlighted the most promising ones. Of the existing seven modern methods considered: thermal control, computer diagnostics, analysis of the composition and quantity of waste gases, technical endoskopirovanie, gauging the compression, the analysis of chemical elements and vibroacoustic. On the presented methods compiled a comparative table on a number of parameters: the cost of ongoing services, the cost of equipment, the length of the diagnostic information content requirements for personnel. The advantages and disadvantages of the methods considered in the parameters. It concludes that characterize the main directions of development of systems of technical diagnostics of internal combustion engines.


2020 ◽  
Vol 5 (4(73)) ◽  
pp. 35-41
Author(s):  
A.G. Taranin

The present publication illuminate the tasks as follows: Electronic indicator proper usage at four–stroke internal combustion engines (diesel engines) indication; Indication results & diagram proper transfer to PC; indicator diagram top dead center TDC correction and engine performance data output values such as PMI–mean indicated pressure, PME–mean effective pressure, NIND–indicated power and NEFF–effective power proper calculations for each cylinder and engine total.


2019 ◽  
Vol 24 (6) ◽  
pp. 155-160
Author(s):  
Mateusz Bor ◽  
Marek Idzior ◽  
Wojciech Karpiuk ◽  
Rafał Smolec

The article discusses the development directions of the then internal combustion engines used in automotive vehicles. The regulations in force regarding permissible emission of harmful and toxic compounds force the vehicle manufacturers to systematically reduce their mass and improve the ecological and economic parameters of engines in order to meet stringent requirements. Favorable application parameters are obtained through the use of downsizing strategies and rightsisers in the construction of motors. The article presents both conceptional concepts. The most important features of downsizing and rightsizing engines, their advantages and disadvantages were determined. There is also described the direction of further development of internal combustion engines, which is characterized by the use of both design strategies.


Author(s):  
Serhii Kovalov

The expediency and advantages of using gas motor fuels, in particular, liquefied petroleum gas with respect to traditional liquid motor fuels, are shown. Technical solutions for the use of liquefied petroleum gas by diesel engines are presented and analysed. The expediency and advantages of converting diesel engines to gas spark ignition internal combustion engines with respect to conversion to gas diesel engines. Developed by the Ukrainian synthesis technology Avenir Gaz has for converting diesel engines to gas internal combustion engines with spark ignition. According to the synthesis technology of Avenir Gaz, re-equipment of diesel engines of vehicles is carried out on the basis of the universal electronic control system for gas internal combustion engines, which is based on the multifunctional electronic microprocessor control unit Avenir Gaz 37. The developed electronic microprocessor control system for gas internal combustion engines with forced ignition has a modular structure and consists of two main and a number of additional subsystems. A schematic diagram of a universal electronic control system of a gas internal combustion engine with spark ignition for operation on liquefied petroleum gas is presented. The principle of operation of the main subsystems, which include the subsystem of power management and injection of liquefied petroleum gas by gas electromagnetic injectors into the intake manifold of a gas engine, and the principle of operation of the control subsystem of the ignition with two-spark ignition coils are described. A multifunctional electronic control unit Avenir Gaz 37 has been designed and manufactured. Non-motorized tests of the electronic control unit confirmed its performance. Based on the synthesis technology of Avenir Gaz using the universal electronic control system for gas internal combustion engines with the Avenir Gaz 37 ECU, the D-240 diesel engine was converted into a gas spark ignition internal combustion engine of the D-240-LPG model. Keywords: gas internal combustion engine with forced ignition, liquefied petroleum gas (LPG), electronic microprocessor control system for gas internal combustion engines, vehicles operating on LPG.


Author(s):  

The Leader4M apparatus for removing carbon deposition with the help of hydrogenair mixture in internal combustion engines was developed. The efficiency of this apparatus when cleaning the engine parts from carbonand coke deposition was proved. Power indicators of diesel engines of BMW X1 2.0 td and Land Rover Discovery 3.0 td were measured before and after cleaning the combustion chamber parts of these engines using the Leader4M installation. After cleaning the parts of these engines from carbon deposits using the Leader4M unit, the maximum power of the engines increased by 2.0–2.1 %, and the maximum torque of these engines increased by 0.2–1.8 %. Keywords internal combustion engines; diesel engine; diesel fuel; carbon formation; hydrogenair mixture


Author(s):  
P. W. A. Eke ◽  
J. H. Walker ◽  
M. A. Williams

A dual-fuel engine may be defined as a compression-ignition engine using mainly gaseous fuel but with a small quantity of fuel oil injected as an ignition source; the engine can be changed over instantaneously and under load to operate on liquid fuel alone. The recent availability of natural gas in this country once again attracts the attention of engineers towards gas as a fuel for internal-combustion engines. This paper traces the development of dual-fuel engines, originally using sewage gas and more recently using natural gas, and considers their advantages, both technical and economic, compared with spark-ignited and diesel engines. The dual-fuel engines within the authors' experience are described. The critical factors in handling natural gas in its liquid form are considered, and the extended scope of dual-fuel engines and alternative fuel engines in mobile applications is briefly reviewed. Finally, the paper examines the future for dual-fuel engines and suggests directions in which further development is required.


Energies ◽  
2020 ◽  
Vol 13 (22) ◽  
pp. 6127
Author(s):  
Md Arman Arefin ◽  
Md Nurun Nabi ◽  
Md Washim Akram ◽  
Mohammad Towhidul Islam ◽  
Md Wahid Chowdhury

Climate change and severe emission regulations in many countries demand fuel and engine researchers to explore sustainable fuels for internal combustion engines. Natural gas could be a source of sustainable fuels, which can be produced from renewable sources. This article presents a complete overview of the liquefied natural gas (LNG) as a potential fuel for diesel engines. An interesting finding from this review is that engine modification and proper utilization of LNG significantly improve system efficiency and reduce greenhouse gas (GHG) emissions, which is extremely helpful to sustainable development. Moreover, some major recent researches are also analyzed to find out drawbacks, advancement and future research potential of the technology. One of the major challenges of LNG is its higher flammability that causes different fatal hazards and when using in dual-fuel engine causes knock. Though researchers have been successful to find out some ways to overcome some challenges, further research is necessary to reduce the hazards and make the fuel more effective and environment-friendly when using as a fuel for a diesel engine.


Energies ◽  
2020 ◽  
Vol 13 (14) ◽  
pp. 3734
Author(s):  
Javier Monsalve-Serrano ◽  
Giacomo Belgiorno ◽  
Gabriele Di Blasio ◽  
María Guzmán-Mendoza

Notwithstanding the policies that move towards electrified powertrains, the transportation sector mainly employs internal combustion engines as the primary propulsion system. In this regard, for medium- to heavy-duty applications, as well as for on- and off-road applications, diesel engines are preferred because of the better efficiency, lower CO2, and greater robustness compared to spark-ignition engines. Due to its use at a large scale, the internal combustion engines as a source of energy depletion and pollutant emissions must further improved. In this sense, the adoption of alternative combustion concepts using cleaner fuels than diesel (e.g., natural gas, ethanol and methanol) presents a viable solution for improving the efficiency and emissions of the future powertrains. Particularly, the methane–diesel dual-fuel concept represents a possible solution for compression ignition engines because the use of the low-carbon methane fuel, a main constituent of natural gas, as primary fuel significantly reduces the CO2 emissions compared to conventional liquid fuels. Nonetheless, other issues concerning higher total hydrocarbon (THC) and CO emissions, mainly at low load conditions, are found. To minimize this issue, this research paper evaluates, through a new and alternative approach, the effects of different engine control parameters, such as rail pressure, pilot quantity, start of injection and premixed ratio in terms of efficiency and emissions, and compared to the conventional diesel combustion mode. Indeed, for a deeper understanding of the results, a 1-Dimensional spray model is used to model the air-fuel mixing phenomenon in response to the variations of the calibration parameters that condition the subsequent dual-fuel combustion evolution. Specific variation settings, in terms of premixed ratio, injection pressure, pilot quantity and combustion phasing are proposed for further efficiency improvements.


Sign in / Sign up

Export Citation Format

Share Document