Municipal Solid Waste for Sustainable Production of Biofuels and Value-Added Products from Biorefinery

Author(s):  
Vishnu Manirethan ◽  
Justin Joy ◽  
Rijin Thomas Varghese ◽  
Priyanka Uddandarao
Author(s):  
T. Khamkeo ◽  
◽  
S. Phaisansuthichol ◽  
P. Supapunt ◽  
M. K. Pholchan

Quantification and characterization of municipal solid waste are vital information for a proper solid waste management. However, these are under-investigated and scarcely implemented in Laos PDR, especially the local communities. This work, therefore, aimed to quantify and characterize municipal solid waste generated from Beung Kiat Ngong Ramsar Site and to recommend possible integrated solid waste management strategies for a sustainable waste management. The average daily waste generation was estimated to be 3.6 kg/day and 2.6 kg/day in Thabou village and Kiat Ngong village, respectively. Organic waste appeared to be the biggest component (28%) for Thabou village, while packaging’s dominated waste composition in Kiat Ngong village. Interestingly, high percentage of golden apple shells waste were mismanaged. These had the potential to convert into value-added products such as calcium carbonate (CaCO3). It was found that fresh golden apple shells contained only 24.16±0.48 g/l as CaCO3, while incineration method increased higher CaCO3 products. The result showed that incineration at the temperature of 400 oC gave the highest amount of CaCO3 with the values of 1207.67±9.45 g/l as CaCO3. Based on the resources and the strength of the Ramsar site, the production of value added material from bio-waste could be integrated into waste management strategies along with 3Rs policies implementation.


PeerJ ◽  
2019 ◽  
Vol 6 ◽  
pp. e6186 ◽  
Author(s):  
Ting-Ting Jiang ◽  
Yan Liang ◽  
Xiang Zhou ◽  
Zi-Wei Shi ◽  
Zhi-Jun Xin

Background Sweet sorghum bagasse (SSB), comprising both a dermal layer and pith, is a solid waste generated by agricultural activities. Open burning was previously used to treat agricultural solid waste but is harmful to the environment and human health. Recent reports showed that certain techniques can convert this agricultural waste into valuable products. While SSB has been considered an attractive raw material for sugar extraction and the production of value-added products, the pith root in the SSB can be difficult to process. Therefore, it is necessary to pretreat bagasse before conventional hydrolysis. Methods A thorough analysis and comparison of various pretreatment methods were conducted based on physicochemical and microscopic approaches. The responses of agricultural SSB stem pith with different particle sizes to pretreatment temperature, acid and alkali concentration and enzyme dosage were investigated to determine the optimal pretreatment. The integrated methods are beneficial to the utilization of carbohydrate-based and unknown compounds in agricultural solid waste. Results Acid (1.5−4.5%, v/v) and alkali (5−8%, w/v) reagents were used to collect cellulose from different meshes of pith at 25–100 °C. The results showed that the use of 100 mesh pith soaked in 8% (w/v) NaOH solution at 100 °C resulted in 32.47% ± 0.01% solid recovery. Follow-up fermentation with 3% (v/v) acid and 6.5% (w/v) alkali at 50 °C for enzymolysis was performed with the optimal enzyme ratio. An analysis of the surface topography and porosity before and after pretreatment showed that both the pore size of the pith and the amount of exposed cellulose increased as the mesh size increased. Interestingly, various compounds, including 42 compounds previously known to be present and 13 compounds not previously known to be present, were detected in the pretreatment liquid, while 10 types of monosaccharides, including D-glucose, D-xylose and D-arabinose, were found in the enzymatic solution. The total monosaccharide content of the pith was 149.48 ± 0.3 mg/g dry matter. Discussion An integrated technique for obtaining value-added products from sweet sorghum pith is presented in this work. Based on this technique, lignin and hemicellulose were effectively broken down, amorphous cellulose was obtained and all sugars in the sweet sorghum pith were hydrolysed into monosaccharides. A total of 42 compounds previously found in these materials, including alcohol, ester, acid, alkene, aldehyde ketone, alkene, phenolic and benzene ring compounds, were detected in the pretreatment pith. In addition, several compounds that had not been previously observed in these materials were found in the pretreatment solution. These findings will improve the transformation of lignocellulosic biomass into sugar to create a high-value-added coproduct during the integrated process and to maximize the potential utilization of agricultural waste in current biorefinery processing.


Author(s):  
Binyu Wang ◽  
Jing Li ◽  
Xue Zhou ◽  
Wenfeng Hao ◽  
Shaoqing Zhang ◽  
...  

With the quick development of lithium industry, a large amount of solid waste of lithium slag are produced. Making high value-added products from lithium slag can not only alleviate the...


2019 ◽  
Vol 11 (4) ◽  
pp. 1060 ◽  
Author(s):  
Norfadhilah Hamzah ◽  
Koji Tokimatsu ◽  
Kunio Yoshikawa

Malaysia generated 156,665 gigawatt-hours (GWh) of electricity in 2016 of which the biggest share of 48.4% was sourced from coal and coke. Malaysia coal consumption was met by 90.5% of imported coal due to high demand from the power sector. Malaysia also has a vast biomass resource that is currently under-utilised for electricity generation. This paper reviews the potential of oil palm residues and municipal solid waste (MSW) for alternative coal replacement employing hydrothermal treatment (HTT). In 2017, about 51.19 million tonnes (Mt) of oil palm waste was available with 888.33 peta-joule (PJ) energy potential to generate 88.03 terawatt-hours (TWh) electricity from oil palm fronds (OPF) and oil palm trunks (OPT), empty fruit bunch (EFB), mesocarp fibre (MF), palm kernel shell (PKS) and palm oil mill effluent (POME). Meanwhile, the MSW energy potential and electricity generation potential was estimated at 86.50 PJ/year and 8.57 TWh/year, respectively. HTT with washing co-treatment eliminates the use of drying for converting range of biomass and MSW into clean solid fuel known as hydrochar. The hydrochar increased in caloric value with lower moisture, Potassium (K) and Chlorine (Cl) contents. These value-added fuels can be used as coal alternative and reduce dependency on imported coal for energy security in Malaysia.


2021 ◽  
Vol 3 ◽  
Author(s):  
Vasanth Kumar Vaithyanathan ◽  
Hubert Cabana

Biosolids (BS) are organic dry matter produced from wastewater treatment plants (WWTPs). The current yearly worldwide production of BS is estimated to be around 100–125 million tons and is expected to continuously increase to around 150–200 million tons by 2025. Wastewater treatment industries across the globe strive to achieve a green and sustainable manufacturing base for the management of enormous amounts of municipal BS, which are rich in nutrients and organic dry matter along with contaminants. The management of these organic-rich wastes through environmentally friendly recovery technologies is a major challenge. The need to improve waste biomass disposal by biological development and develop more economically viable processes has led to a focus on the transformation of waste resources into value-added products (VAP). This paper assesses the leading disposal methods (based on volume and contaminant reduction) and reviews the state of biotechnological processes for VAP recovery from municipal wastewater sludge (untreated solid waste residual) and BS (stabilized solid waste which meets criteria for its use in land). A review of the anaerobic and aerobic digestion processes is presented to provide a holistic overview of this growing research field. Furthermore, the paper also sheds light on the pollutant reduction and resource recovery approaches for enzymes, bioflocculants, bioplastics, biopesticides, and biogas as a mean to represent BS as a potential opportunity for WWTPs. However, only a few technologies have been implemented for VAP resource recovery and a shift from WWTPs to waste resource recovery facilities is still far from being achieved.


2012 ◽  
Vol 599 ◽  
pp. 586-591
Author(s):  
Yin Liu ◽  
Jun Tao Chen ◽  
Shu Yang Yao ◽  
Cheng Xiang Zhang

Mine solid waste is the great potential resource, but unreasonable resource development leads to the loss of solid waste and then does harm to environment. There are many ways of environmental management and comprehensive utilization of mine solid waste; recover useful elements, produce building materials, secondary energy recovery, fill the mine pit and collapse pit, paving, etc. However, many problems exist such as backward technology, lack of market competition due to low value-added products, government support which remains to be strengthened, less awareness of reasonable development of resources and effective environment protection, backward laws and regulations. Based on these problems, some relevant proposes were put forward.


Sign in / Sign up

Export Citation Format

Share Document