Effect of Mach Number on the Rarefied Gas Flow Over a Forward-Facing Step

Author(s):  
Deepak Nabapure ◽  
Arjun Singh ◽  
K. Ram Chandra Murthy
Author(s):  
Deepak Nabapure ◽  
Ram Chandra Murthy K

Rarefied gas flow over a backward-facing step (BFS) is often encountered in separating flows prevalent in aerodynamic flows, engine flows, condensers, space vehicles, heat transfer systems, and microflows. Direct Simulation Monte Carlo (DSMC) is a powerful tool to investigate such flows. The purpose of this research is to assess the impact of Mach number and wall temperature on the flow and surface properties in the transitional flow regime. The Mach numbers considered are 5, 10, 25, 30, and the ratio of the temperature of the wall to that of freestream considered are 1, 2, 4, 8. The Reynolds number for the cases studied is 8.6, 17.2, 43, and 51.7, respectively. Typically the flow properties near the wall are found to increase with both Mach number and wall temperature owing to compressibility and viscous dissipation effects. The variation in flow properties is more sensitive to Mach number than the wall temperature. The surface properties are found to decrease with Mach number and increase with wall temperature. Moreover, in the wake of the step, the vortex’s recirculation length is reasonably independent of both free stream Mach number and wall temperature, whereas it decreases with Knudsen number.


Author(s):  
Mohamad M. Joneidipour ◽  
Reza Kamali

In the present study, the effect of wall in supersonic rarefied gas flow past a square cylinder is numerically studied. Therefore, a supersonic rarefied gas flow over a square cylinder is simulated first. Then, the simulations are repeated for a square cylinder confined between two parallel plates. In both cases, the Mach number distribution in the flow field of supersonic rarefied gas over the square cylinder is obtained using the direct simulation Monte Carlo method. Close inspection of contour lines of Mach number over the square cylinder shows that a discontinuity in the flow field occurs across the shock wave at the slip regime while there is no discontinuity at the transition flow regime. In the present paper, the effect of blockage ratio (defined as the distance between two parallel plates divided by the cylinder length) on the Mach number distribution in the flow field of supersonic rarefied gas over the square cylinder is also studied. Meanwhile, the obtained results from both mentioned cases are compared to each other. It is found that the deviation of two sets of data diminishes gradually as the blockage ratio increases.


Author(s):  
Yuan Hu ◽  
Quanhua Sun ◽  
Jing Fan

Gas flow over a micro cylinder is simulated using both a compressible Navier-Stokes solver and a hybrid continuum/particle approach. The micro cylinder flow has low Reynolds number because of the small length scale and the low speed, which also indicates that the rarefied gas effect exists in the flow. A cylinder having a diameter of 20 microns is simulated under several flow conditions where the Reynolds number ranges from 2 to 50 and the Mach number varies from 0.1 to 0.8. It is found that the low Reynolds number flow can be compressible even when the Mach number is less than 0.3, and the drag coefficient of the cylinder increases when the Reynolds number decreases. The compressible effect will increase the pressure drag coefficient although the friction coefficient remains nearly unchanged. The rarefied gas effect will reduce both the friction and pressure drag coefficients, and the vortex in the flow may be shrunk or even disappear.


2020 ◽  
Vol 32 (8) ◽  
pp. 087108
Author(s):  
A. A. Abramov ◽  
A. V. Butkovskii ◽  
O. G. Buzykin

Sign in / Sign up

Export Citation Format

Share Document