Intrusion detection of railway clearance from infrared images using generative adversarial networks

2020 ◽  
pp. 1-13
Author(s):  
Yundong Li ◽  
Yi Liu ◽  
Han Dong ◽  
Wei Hu ◽  
Chen Lin

The intrusion detection of railway clearance is crucial for avoiding railway accidents caused by the invasion of abnormal objects, such as pedestrians, falling rocks, and animals. However, detecting intrusions using deep learning methods from infrared images captured at night remains a challenging task because of the lack of sufficient training samples. To address this issue, a transfer strategy that migrates daytime RGB images to the nighttime style of infrared images is proposed in this study. The proposed method consists of two stages. In the first stage, a data generation model is trained on the basis of generative adversarial networks using RGB images and a small number of infrared images, and then, synthetic samples are generated using a well-trained model. In the second stage, a single shot multibox detector (SSD) model is trained using synthetic data and utilized to detect abnormal objects from infrared images at nighttime. To validate the effectiveness of the proposed method, two groups of experiments, namely, railway and non-railway scenes, are conducted. Experimental results demonstrate the effectiveness of the proposed method, and an improvement of 17.8% is achieved for object detection at nighttime.

2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Richa Sharma ◽  
Manoj Sharma ◽  
Ankit Shukla ◽  
Santanu Chaudhury

Generation of synthetic data is a challenging task. There are only a few significant works on RGB video generation and no pertinent works on RGB-D data generation. In the present work, we focus our attention on synthesizing RGB-D data which can further be used as dataset for various applications like object tracking, gesture recognition, and action recognition. This paper has put forward a proposal for a novel architecture that uses conditional deep 3D-convolutional generative adversarial networks to synthesize RGB-D data by exploiting 3D spatio-temporal convolutional framework. The proposed architecture can be used to generate virtually unlimited data. In this work, we have presented the architecture to generate RGB-D data conditioned on class labels. In the architecture, two parallel paths were used, one to generate RGB data and the second to synthesize depth map. The output from the two parallel paths is combined to generate RGB-D data. The proposed model is used for video generation at 30 fps (frames per second). The frame referred here is an RGB-D with the spatial resolution of 512 × 512.


2020 ◽  
Author(s):  
Belén Vega-Márquez ◽  
Cristina Rubio-Escudero ◽  
Isabel Nepomuceno-Chamorro

Abstract The generation of synthetic data is becoming a fundamental task in the daily life of any organization due to the new protection data laws that are emerging. Because of the rise in the use of Artificial Intelligence, one of the most recent proposals to address this problem is the use of Generative Adversarial Networks (GANs). These types of networks have demonstrated a great capacity to create synthetic data with very good performance. The goal of synthetic data generation is to create data that will perform similarly to the original dataset for many analysis tasks, such as classification. The problem of GANs is that in a classification problem, GANs do not take class labels into account when generating new data, it is treated as any other attribute. This research work has focused on the creation of new synthetic data from datasets with different characteristics with a Conditional Generative Adversarial Network (CGAN). CGANs are an extension of GANs where the class label is taken into account when the new data is generated. The performance of our results has been measured in two different ways: firstly, by comparing the results obtained with classification algorithms, both in the original datasets and in the data generated; secondly, by checking that the correlation between the original data and those generated is minimal.


2021 ◽  
Vol 11 (6) ◽  
pp. 2787
Author(s):  
Debapriya Hazra ◽  
Yung-Cheol Byun

Fermentation is an age-old technique used to preserve food by restoring proper microbial balance. Boiled barley and nuruk are fermented for a short period to produce Shindari, a traditional beverage for the people of Jeju, South Korea. Shindari has been proven to be a drink of multiple health benefits if fermented for an optimal period. It is necessary to predict the ideal fermentation time required by each microbial community to keep the advantages of the microorganisms produced by the fermentation process in Shindari intact and to eliminate contamination. Prediction through machine learning requires past data but the process of obtaining fermentation data of Shindari is time consuming, expensive, and not easily available. Therefore, there is a need to generate synthetic fermentation data to explore various benefits of the drink and to reduce any risk from overfermentation. In this paper, we propose a model that takes incomplete tabular fermentation data of Shindari as input and uses multiple imputation ensemble (MIE) and generative adversarial networks (GAN) to generate synthetic fermentation data that can be later used for prediction and microbial spoilage control. For multiple imputation, we used multivariate imputation by chained equations and random forest imputation, and ensembling was done using the bagging and stacking method. For generating synthetic data, we remodeled the tabular GAN with skip connections and adapted the architecture of Wasserstein GAN with gradient penalty. We compared the performance of our model with other imputation and ensemble models using various evaluation metrics and visual representations. Our GAN model could overcome the mode collapse problem and converged at a faster rate than existing GAN models for synthetic data generation. Experiment results show that our proposed model executes with less error, is more accurate, and generates significantly better synthetic fermentation data compared to other models.


2021 ◽  
Author(s):  
Ning Wei ◽  
Longzhi Wang ◽  
Guanhua Chen ◽  
Yirong Wu ◽  
Shuifa Sun ◽  
...  

Abstract Data-driven based deep learing has become a key research direction in the field of artificial intelligence. Abundant training data is a guarantee for building efficient and accurate models. However, due to the privacy protection policy, research institutions are often limited to obtain a large number of training data, which would lead to a lack of training sets circumstance. In this paper, a mixed data generation model (mixGAN) based on generative adversarial networks (GANs) is proposed to synthesize fake data that have the same distribution with the real data, so as to supplement the real data and increase the number of available samples. The model first pre-trains the autoencoder which maps given dataset into a low-dimensional continuous space. Then, the Generator constructed in the low-dimension space is obtained by training it adversarially with Discriminator constructed in the original space. Since the constructed Discriminator not only consider the loss of the continuous attributes but also the labeled attributes, the generator nets formed by the Generator and the decoder can effectively learn the intrinsic distribution of the mixed data. We evaluate the proposed method both in the independent distribution of the attribute and in the relationship of the attributes, and the experiment results show that the proposed generate method has a better performance in preserve the intrinsic distribution compared with other generation algorithms based on deep learning.


Sensors ◽  
2021 ◽  
Vol 21 (17) ◽  
pp. 5767
Author(s):  
Zhijun Chen ◽  
Jingming Zhang ◽  
Yishi Zhang ◽  
Zihao Huang

For urban traffic, traffic accidents are the most direct and serious risk to people’s lives, and rapid recognition and warning of traffic accidents is an important remedy to reduce their harmful effects. However, research scholars are often confronted with the problem of scarce and difficult-to-collect accident data resources for traffic accident scenarios. Therefore, in this paper, a traffic data generation model based on Generative Adversarial Networks (GAN) is developed. To make GAN applicable to non-graphical data, we improve the generator network structure of the model and used the generated model to resample the original data to obtain new traffic accident data. By constructing an adversarial neural network model, we generate a large number of data samples that are similar to the original traffic accident data. Results of the statistical test indicate that the generated samples are not significantly different from the original data. Furthermore, the experiments of traffic accident recognition with several representative classifiers demonstrate that the augmented data can effectively enhance the performance of accident recognition, with a maximum increase in accuracy of 3.05% and a maximum decrease in the false positive rate of 2.95%. Experimental results verify that the proposed method can provide reliable mass data support for the recognition of traffic accidents and road traffic safety.


Author(s):  
Simon Fahle ◽  
Thomas Glaser ◽  
Andreas Kneißler ◽  
Bernd Kuhlenkötter

AbstractAs artificial intelligence and especially machine learning gained a lot of attention during the last few years, methods and models have been improving and are becoming easily applicable. This possibility was used to develop a quality prediction system using supervised machine learning methods in form of time series classification models to predict ovality in radial-axial ring rolling. Different preprocessing steps and model implementations have been used to improve quality prediction. A semi-supervised approach is used to improve the prediction and analyze, to what extend it can improve current research in machine learning for quality prediciton. Moreover, first research steps are taken towards a synthetic data generation within the radial-axial ring rolling domain using generative adversarial networks.


2020 ◽  
Author(s):  
Alceu Bissoto ◽  
Sandra Avila

Melanoma is the most lethal type of skin cancer. Early diagnosis is crucial to increase the survival rate of those patients due to the possibility of metastasis. Automated skin lesion analysis can play an essential role by reaching people that do not have access to a specialist. However, since deep learning became the state-of-the-art for skin lesion analysis, data became a decisive factor in pushing the solutions further. The core objective of this M.Sc. dissertation is to tackle the problems that arise by having limited datasets. In the first part, we use generative adversarial networks to generate synthetic data to augment our classification model’s training datasets to boost performance. Our method generates high-resolution clinically-meaningful skin lesion images, that when compound our classification model’s training dataset, consistently improved the performance in different scenarios, for distinct datasets. We also investigate how our classification models perceived the synthetic samples and how they can aid the model’s generalization. Finally, we investigate a problem that usually arises by having few, relatively small datasets that are thoroughly re-used in the literature: bias. For this, we designed experiments to study how our models’ use data, verifying how it exploits correct (based on medical algorithms), and spurious (based on artifacts introduced during image acquisition) correlations. Disturbingly, even in the absence of any clinical information regarding the lesion being diagnosed, our classification models presented much better performance than chance (even competing with specialists benchmarks), highly suggesting inflated performances.


Sign in / Sign up

Export Citation Format

Share Document