scholarly journals Higher Derivative Theory for Curvature Term Coupling with Scalar Field

Author(s):  
Pawan Joshi ◽  
Sukanta Panda
2011 ◽  
Vol 334 (1) ◽  
pp. 187-191 ◽  
Author(s):  
N. Ibotombi Singh ◽  
S. Surendra Singh ◽  
S. Romaleima Devi

2019 ◽  
Vol 34 (38) ◽  
pp. 2050057
Author(s):  
Hai Lin ◽  
Gaurav Narain

In this paper, we look for AdS solutions to generalized gravity theories in the bulk in various spacetime dimensions. The bulk gravity action includes the action of a non-minimally coupled scalar field with gravity, and a higher-derivative action of gravity. The usual Einstein–Hilbert gravity is induced when the scalar acquires a nonzero vacuum expectation value. The equation of motion in the bulk shows scenarios where AdS geometry emerges on-shell. We further obtain the action of the fluctuation fields on the background at quadratic and cubic orders.


2009 ◽  
Vol 18 (04) ◽  
pp. 559-586 ◽  
Author(s):  
M. D. POLLOCK

Causal solutions of the Gödel type, for which the line element is ds2 = dt2 - 2b e mxdtdv - c e 2mxdv2 - dx2 - dz2 with c = 0, are known to exist for gravitational theories containing a cosmological constant Λ and quadratic higher-derivative terms defined by the Lagrangian L = -(1/2)κ-2(R + 2Λ) + A1R2 + A2RijRij. Here, we show that acausal solutions, for which c < 0, containing closed time-like lines, can be constructed only if A2 = 0. Extension of this analysis to the heterotic superstring theory, including a generic massless scalar field ϕ plus quadratic and quartic gravitational terms [Formula: see text] and [Formula: see text], again yields a causal solution with c = 0, and also Λ = 0, as required for anomaly freedom, while solutions with c < 0 are ruled out. More general rotational space–times appear to be intractable analytically, and therefore it remains a matter of conjecture that the heterotic superstring admits only classical Lorentzian solutions which respect causality. For the energy density ρ(ϕ) of the scalar field is positive semi-definite only when g00 ≥ 0, which is equivalent to the causality condition g11 ≤ 0 or c ≥ 0 in a Lorentzian space–time for which det gij < 0; while ρ(ϕ) is unbounded from below in the presence of closed time-like lines, when g11 > 0, implying instability of ϕ, which will react back on the metric until it becomes causal.


Author(s):  
Nahomi Kan ◽  
Masashi Kuniyasu ◽  
Kiyoshi Shiraishi

In this paper, we calculate the vacuum fluctuation of the stress tensor of a higher-derivative theory around a thin cosmic string. To this end, we adopt the method to obtain the stress tensor from the effective action developed by Gibbons et al. By their method, the quantum stress tensor of higher-derivative scalar theories without self-interaction is expressed as a simple sum of quantum stress tensors of free massive scalar fields. Unlike the vacuum expectation value of the scalar field squared obtained in the similar model, there appears no reduction of the values near the conical singularity.


2009 ◽  
Vol 18 (02) ◽  
pp. 289-318 ◽  
Author(s):  
R. A. EL-NABULSI

We investigate the cosmological effects of an alternative theory of gravity on the four-dimensional Randall–Sundrum braneworld of type II with a higher-order string curvature term added to the action. We discuss the possibility of a varying speed of light, which has recently attracted considerable attention, in the presence a Maxwell field and of a dynamically evolving bulk scalar field nonminimally coupled to scalar curvature in a quadratic form, together with a dark matter–dark energy interaction term. After deriving the modified Friedmann equation on the brane, as well as the scalar field equations, we then analyze the dynamical equations obtained so far. Special attention is paid to scaling solutions which could be important building blocks in constructing the models of dark energy. The constructed model exhibits several features of cosmological and astrophysical interest for both the early and the late universe, consistent with recent observations, in particular the ones concerned with celerity of light, four and five gravitational constants, black hole masses and entropies.


2012 ◽  
Vol 27 (22) ◽  
pp. 1250131 ◽  
Author(s):  
V. I. TKACH

This paper presents a new higher derivative gravity which in spontaneous breaking electroweak symmetry state does not have ghost in gravity sector. We show that Newton constant of the gravity and dark energy density depend on the fundamental TeV scale and the coupling constant at the quadratic curvature term. We consider the supersymmetric extension of this model.


2013 ◽  
Vol 28 (39) ◽  
pp. 1350182 ◽  
Author(s):  
YONG-WAN KIM ◽  
YUN SOO MYUNG ◽  
YOUNG-JAI PARK

We study a sixth-order derivative scalar field model in Minkowski spacetime as a toy model of higher-derivative critical gravity theories. This model is consistently quantized when using the Becchi–Rouet–Stora–Tyutin (BRST) quantization scheme even though it does not show gauge symmetry manifestly. Imposing a BRST quartet generated by two scalars and ghosts, there remains a nontrivial subspace with positive norm. This might be interpreted as a Minkowskian dual version of the unitary truncation in the logarithmic conformal field theory.


Sign in / Sign up

Export Citation Format

Share Document