brst quantization
Recently Published Documents


TOTAL DOCUMENTS

205
(FIVE YEARS 9)

H-INDEX

19
(FIVE YEARS 1)

2021 ◽  
Vol 104 (12) ◽  
Author(s):  
Taichiro Kugo ◽  
Ryuichi Nakayama ◽  
Nobuyoshi Ohta

2021 ◽  
Vol 2021 ◽  
pp. 1-24
Author(s):  
A. Tripathi ◽  
B. Chauhan ◽  
A. K. Rao ◽  
R. P. Malik

We carry out the Becchi-Rouet-Stora-Tyutin (BRST) quantization of the one 0 + 1 -dimensional (1D) model of a free massive spinning relativistic particle (i.e., a supersymmetric system) by exploiting its classical infinitesimal and continuous reparameterization symmetry transformations. We use the modified Bonora-Tonin (BT) supervariable approach (MBTSA) to BRST formalism to obtain the nilpotent (anti-)BRST symmetry transformations of the target space variables and the (anti-)BRST invariant Curci-Ferrari- (CF-) type restriction for the 1D model of our supersymmetric (SUSY) system. The nilpotent (anti-)BRST symmetry transformations for other variables of our model are derived by using the (anti-)chiral supervariable approach (ACSA) to BRST formalism. Within the framework of the latter, we have shown the existence of the CF-type restriction by proving the (i) symmetry invariance of the coupled Lagrangians and (ii) the absolute anticommutativity property of the conserved (anti-)BRST charges. The application of the MBTSA to a physical SUSY system (i.e., a 1D model of a massive spinning particle) is a novel result in our present endeavor. In the application of ACSA, we have considered only the (anti-)chiral super expansions of the supervariables. Hence, the observation of the absolute anticommutativity of the (anti-)BRST charges is a novel result. The CF-type restriction is universal in nature as it turns out to be the same for the SUSY and non-SUSY reparameterization (i.e., 1D diffeomorphism) invariant models of the (non-)relativistic particles.


2021 ◽  
Vol 2021 (3) ◽  
Author(s):  
Soumangsu Chakraborty

Abstract In this paper we prove the equivalence among (i) the weakly coupled worldsheet string theory described by the coset sigma model $$ \frac{\mathrm{SL}{\left(2,\mathrm{\mathbb{R}}\right)}_k\times \mathrm{U}(1)}{\mathrm{U}(1)} $$ SL 2 ℝ k × U 1 U 1 × S3 × T4 with SL(2, ℝ) WZW level k ≥ 2, (ii) the full near horizon theory of the NS5 branes with k NS5 branes wrapping T4 × S1, p » 1 F1 strings wrapping S1 and n units of momentum along the S1 and (iii) the single trace $$ T\overline{T} $$ T T ¯ deformation of string theory in AdS3 × S3 × T4. As a check we compute the spectrum (continuous) of the spacetime theory by performing BRST quantization of the coset description of the worldsheet theory and show that it matches exactly with the one derived in the case of single trace $$ T\overline{T} $$ T T ¯ deformed string theory in AdS3. Secondly, we compute the two-point correlation function of local operators of the spacetime theory using the worldsheet coset approach and reproduce the same two-point function from the supergravity approach.


2020 ◽  
Vol 35 (23) ◽  
pp. 2050134
Author(s):  
Safia Yasmin

The BRST quantization of the U(1) gauged model of FJ-type chiral boson for [Formula: see text] and [Formula: see text] are performed using the Batalin–Fradkin–Vilkovisky formalism. BFV formalism converts the second-class algebra into an effective first-class algebra with the help of auxiliary fields. Explicit expressions of the BRST charge, the involutive Hamiltonian, and the preserving BRST symmetry action are given and the full quantization has been carried through. For [Formula: see text], this Hamiltonian gives the gauge invariant Lagrangian including the well-known Wess–Zumino term, while for [Formula: see text] the corresponding Lagrangian has the additional new type of the Wess–Zumino term. The spectra in both cases have been analysed and the Wess–Zumino actions in terms of auxiliary fields are identified.


2020 ◽  
Vol 80 (2) ◽  
Author(s):  
Sanjib Ghosal ◽  
Anisur Rahaman

Abstract We consider chiral Schwinger model with Faddeevian anomaly, and carry out the quantization of both the gauge-invariant and non-invariant version of this model has been. Theoretical spectra of this model have been determined both in the Lagrangian and Hamiltonian formulation and a necessary correlation between these two are made. BRST quantization using BFV formalism has been executed which shows spontaneous appearance of Wess–Zumino term during the process of quantization. The gauge invariant version of this model in the extended phase space is found to map onto the physical phase space with the appropriate gauge fixing condition.


2019 ◽  
Vol 34 (09) ◽  
pp. 1950050 ◽  
Author(s):  
E. C. Manavella

Starting from the classical nonrelativistic electrodynamics in 1[Formula: see text]+[Formula: see text]1 dimensions, a higher-derivative version is proposed. This is made by adding a suitable higher-derivative term for the electromagnetic field to the Lagrangian of the original electrodynamics, preserving its gauge invariance. By following the usual Hamiltonian method for singular higher-derivative systems, the canonical quantization for the higher-derivative model is developed. By extending the Faddeev–Senjanovic algorithm, the path integral quantization is carried out. Hence, the Feynman rules are established and the diagrammatic structure is analyzed. The use of the higher-derivative term eliminates in the Landau gauge the ultraviolet divergence of the primitively divergent Feynman diagrams of the original model, where the electromagnetic field propagator is present. A generalization of the BRST quantization is also considered.


Sign in / Sign up

Export Citation Format

Share Document