Enhancing Spectrum Utilization in 2G to 5G Cognitive Radio Networks

Author(s):  
Bablu Kumar Singh ◽  
Rajesh Bhadada
Author(s):  
Haiyan Ye ◽  
Jiabao Jiang

AbstractThe lack of spectrum resources restricts the development of wireless communication applications. In order to solve the problems of low spectrum utilization and channel congestion caused by the static division of spectrum resource, this paper proposes an optimal linear weighted cooperative spectrum sensing for clustered-based cognitive radio networks. In this scheme, different weight values will be assigned for cooperative nodes according to the SNR of cognitive users and the historical sensing accuracy. In addition, the cognitive users can be clustered, and the users with the better channel characteristics will be selected as cluster heads for gathering the local sensing information. Simulation results show that the proposed scheme can obtain better sensing performance, improve the detection probability and reduce the error probability.


Sensors ◽  
2020 ◽  
Vol 20 (13) ◽  
pp. 3800
Author(s):  
Xiang Xiao ◽  
Fanzi Zeng ◽  
Zhenzhen Hu ◽  
Lei Jiao

Cognitive radio networks (CRNs), which allow secondary users (SUs) to dynamically access a network without affecting the primary users (PUs), have been widely regarded as an effective approach to mitigate the shortage of spectrum resources and the inefficiency of spectrum utilization. However, the SUs suffer from frequent spectrum handoffs and transmission limitations. In this paper, considering the quality of service (QoS) requirements of PUs and SUs, we propose a novel dynamic flow-adaptive spectrum leasing with channel aggregation. Specifically, we design an adaptive leasing algorithm, which adaptively adjusts the portion of leased channels based on the number of ongoing and buffered PU flows. Furthermore, in the leased spectrum band, the SU flows with access priority employ dynamic spectrum access of channel aggregation, which enables one flow to occupy multiple channels for transmission in a dynamically changing environment. For performance evaluation, the continuous time Markov chain (CTMC) is developed to model our proposed strategy and conduct theoretical analyses. Numerical results demonstrate that the proposed strategy effectively improves the spectrum utilization and network capacity, while significantly reducing the forced termination probability and blocking probability of SU flows.


2018 ◽  
Vol 7 (2.8) ◽  
pp. 372 ◽  
Author(s):  
D Ganesh ◽  
T Pavan Kumar

Cognitive radio is a promising wireless communication technology that improves spectrum utilization and offers many benefits for internet users. Cognitive radio networks utilizes the available limited resources in a more efficient and flexible way. The main objective of the Cognitive network is to efficiently utilize the unutilized spectrum and meet the demand of the secondary users. some of the important features of cognitive of Cognitive radio networks are dynamic spectrum access, self organizing  and flexibility. As Cognitive radio networks are flexible in nature, it will be effected by various security attacks which in turn affects the performance of the network. Furthermore Cognitive radio networks transmit the spectrum in several licensed bands and it also performs dynamic spectrum allocation. Cognitive radio and Cognitive radio networks are wireless in nature these face conventional attacks. In this survey we address various  attacks in different layers , new threats and challenges that Cognitive networks face, current available solutions to address layer attacks. In addition applications, open problems and future Research challenges are also specified.


Author(s):  
Saed Alrabaee ◽  
Mahmoud Khasawneh ◽  
Anjali Agarwal

Cognitive radio technology is the vision of pervasive wireless communications that improves the spectrum utilization and offers many social and individual benefits. The objective of the cognitive radio network technology is to use the unutilized spectrum by primary users and fulfill the secondary users' demands irrespective of time and location (any time and any place). Due to their flexibility, the Cognitive Radio Networks (CRNs) are vulnerable to numerous threats and security problems that will affect the performance of the network. Little attention has been given to security aspects in cognitive radio networks. In this chapter, the authors discuss the security issues in cognitive radio networks, and then they present an intensive list of the main known security threats in CRN at various layers and the adverse effects on performance due to such threats, and the current existing paradigms to mitigate such issues and threats. Finally, the authors highlight proposed directions in order to make CRN more authenticated, reliable, and secure.


2017 ◽  
Vol 2017 ◽  
pp. 1-16 ◽  
Author(s):  
Mahmoud Khasawneh ◽  
Anjali Agarwal

Spectrum sensing is the first step to overcome the spectrum scarcity problem in Cognitive Radio Networks (CRNs) wherein all unutilized subbands in the radio environment are explored for better spectrum utilization. Adversary nodes can threaten these spectrum sensing results by launching passive and active attacks that prevent legitimate nodes from using the spectrum efficiently. Securing the spectrum sensing process has become an important issue in CRNs in order to ensure reliable and secure spectrum sensing and fair management of resources. In this paper, a novel collaborative approach during spectrum sensing process is proposed. It monitors the behavior of sensing nodes and identifies the malicious and misbehaving sensing nodes. The proposed approach measures the node’s sensing reliability using a value called belief level. All the sensing nodes are grouped into a specific number of clusters. In each cluster, a sensing node is selected as a cluster head that is responsible for collecting sensing-reputation reports from different cognitive nodes about each node in the same cluster. The cluster head analyzes information to monitor and judge the nodes’ behavior. By simulating the proposed approach, we showed its importance and its efficiency for achieving better spectrum security by mitigating multiple passive and active attacks.


2020 ◽  
Author(s):  
Abhishek Kumar ◽  
Nitin Gupta ◽  
Riya Tapwal

<div>Emerging of Cognitive Radio (CR) technology has</div><div>provided optimistic solution for the dearth of spectrum by</div><div>improving the spectrum utilization. The opportunistic use of the spectrum is enabled by spectrum sensing which is one of the key functionality of CR systems. To perform the interference free transmission in a cognitive radio networks, an important part for unlicensed user is to identify a licensed user with the help of spectrum sensing. Recently, the Cooperative Spectrum Sensing has been widely used in the literature where various scattered unlicensed users collaborate with each other to make the final sensing decision. This overcome the hidden terminal problem</div><div>and also improve the overall reliability of the decisions made</div><div>about the presence or absence of a licensed user. Each unlicensed user send the sensing results to the base station for final decision. However there exist some nodes which do not provide the correct sensing results to maximize their own profit which can highly degrade the CR network functionality. In this paper, a trust aware model is proposed for detection of misbehaving nodes such that their sensing reports can be filter out from the final result. The performance evaluation of the proposed scheme is done by checking its robustness and efficiency against various possible attacks. </div>


Sign in / Sign up

Export Citation Format

Share Document