An Investigation for Effective Thermal Properties of Titanium Alloy Lattice Sandwich Panels

Author(s):  
Junpeng Li ◽  
Zhibin Yang
Materials ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 556
Author(s):  
Zhenyu Zhao ◽  
Jianwei Ren ◽  
Shaofeng Du ◽  
Xin Wang ◽  
Zihan Wei ◽  
...  

Ultralight sandwich constructions with corrugated channel cores (i.e., periodic fluid-through wavy passages) are envisioned to possess multifunctional attributes: simultaneous load-carrying and heat dissipation via active cooling. Titanium alloy (Ti-6Al-4V) corrugated-channel-cored sandwich panels (3CSPs) with thin face sheets and core webs were fabricated via the technique of selective laser melting (SLM) for enhanced shear resistance relative to other fabrication processes such as vacuum brazing. Four-point bending responses of as-fabricated 3CSP specimens, including bending resistance and initial collapse modes, were experimentally measured. The bending characteristics of the 3CSP structure were further explored using a combined approach of analytical modeling and numerical simulation based on the method of finite elements (FE). Both the analytical and numerical predictions were validated against experimental measurements. Collapse mechanism maps of the 3CSP structure were subsequently constructed using the analytical model, with four collapse modes considered (face-sheet yielding, face-sheet buckling, core yielding, and core buckling), which were used to evaluate how its structural geometry affects its collapse initiation mode.


2013 ◽  
Vol 465-466 ◽  
pp. 1060-1064 ◽  
Author(s):  
Zazuli Mohid ◽  
M.A. Liman ◽  
M.R.A. Rahman ◽  
N.H. Rafai ◽  
Erween Abdul Rahim

Welding parameters are directly influenced by the work material properties. Thermal properties such as thermal conductivity and melting point are very important to estimate the range of power required and the allowable scanning speed. However, when two or more different materials are involved, modifying lasing parameters are not enough to counter the problems such as imbalance melting region and weak adhesion of contact surface. To counter this problem, the characteristics of welding beads formation for both materials need to be clarified. In this study, comparison of welding beads constructed using the same scanning parameters were done to understand the different and similarity of melted region for the both materials. Actual welding of the both materials were done under different offset distance to obtain a balanced melting area and well mixed melting region.


1987 ◽  
Vol 109 (4) ◽  
pp. 330-335 ◽  
Author(s):  
P. A. Patel ◽  
J. W. Valvano ◽  
J. A. Pearce ◽  
S. A. Prahl ◽  
C. R. Denham

A microcomputer based instrument to measure effective thermal conductivity and diffusivity at the surface of a tissue has been developed. Self-heated spherical thermistors, partially embedded in an insulator, are used to simultaneously heat tissue and measure the resulting temperature rise. The temperature increase of the thermistor for a given applied power is a function of the combined thermal properties of the insulator, the thermistor, and the tissue. Once the probe is calibrated, the instrument accurately measures the thermal properties of tissue. Conductivity measurements are accurate to 2 percent and diffusivity measurements are accurate to 4 percent. A simplified bioheat equation is used which assumes the effective tissue thermal conductivity is a linear function of perfusion. Since tissue blood flow strongly affects heat transfer, the surface thermistor probe is quite sensitive to perfusion.


2017 ◽  
Vol 48 (12) ◽  
pp. 1213-1219 ◽  
Author(s):  
G. Laschet ◽  
M. Apel ◽  
J. Wipperfürth ◽  
C. Hopmann ◽  
M. Spekowius ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document